Computer Science - Graphics Publications (50)

Search

Computer Science - Graphics Publications

We address the problem of making human motion capture in the wild more practical by using a small set of inertial sensors attached to the body. Since the problem is heavily under-constrained, previous methods either use a large number of sensors, which is intrusive, or they require additional video input. We take a different approach and constrain the problem by: (i) making use of a realistic statistical body model that includes anthropometric constraints and (ii) using a joint optimization framework to fit the model to orientation and acceleration measurements over multiple frames. Read More


Handheld Augmented Reality commonly implements some variant of magic lens rendering, which turns only a fraction of the user's real environment into AR while the rest of the environment remains unaffected. Since handheld AR devices are commonly equipped with video see-through capabilities, AR magic lens applications often suffer from spatial distortions, because the AR environment is presented from the perspective of the camera of the mobile device. Recent approaches counteract this distortion based on estimations of the user's head position, rendering the scene from the user's perspective. Read More


Multivariate graphs are prolific across many fields, including transportation and neuroscience. A key task in graph analysis is the exploration of connectivity, to, for example, analyze how signals flow through neurons, or to explore how well different cities are connected by flights. While standard node-link diagrams are helpful in judging connectivity, they do not scale to large networks. Read More


Virtual Reality, an immersive technology that replicates an environment via computer-simulated reality, gets a lot of attention in the entertainment industry. However, VR has also great potential in other areas, like the medical domain, Examples are intervention planning, training and simulation. This is especially of use in medical operations, where an aesthetic outcome is important, like for facial surgeries. Read More


Many problems in image processing and computer vision (e.g. colorization, style transfer) can be posed as 'manipulating' an input image into a corresponding output image given a user-specified guiding signal. Read More


Color theme or color palette can deeply influence the quality and the feeling of a photograph or a graphical design. Although color palettes may come from different sources such as online crowd-sourcing, photographs and graphical designs, in this paper, we consider color palettes extracted from fine art collections, which we believe to be an abundant source of stylistic and unique color themes. We aim to capture color styles embedded in these collections by means of statistical models and to build practical applications upon these models. Read More


A challenge in isogeometric analysis is constructing analysis-suitable volumetric meshes which can accurately represent the geometry of a given physical domain. In this paper, we propose a method to derive a spline-based representation of a domain of interest from voxel-based data. We show an efficient way to obtain a boundary representation of the domain by a level-set function. Read More


Texture is an essential property of physical objects that affects aesthetics, usability, and functionality. However, designing and applying textures to 3D objects with existing tools remains difficult and time-consuming; it requires proficient 3D modeling skills. To address this, we investigated an auto-completion approach for efficient texture creation that automates the tedious, repetitive process of applying texture while allowing flexible customization. Read More


Non-rigid registration is challenging because it is ill-posed with high degrees of freedom and is thus sensitive to noise and outliers. We propose a robust non-rigid registration method using reweighted sparsities on position and transformation to estimate the deformations between 3-D shapes. We formulate the energy function with dual sparsities on both the data term and the smoothness term, and define the smoothness constraint using local rigidity. Read More


Recent works have demonstrated non-line of sight (NLOS) reconstruction by using the time-resolved signal frommultiply scattered light. These works combine ultrafast imaging systems with computation, which back-projects the recorded space-time signal to build a probabilistic map of the hidden geometry. Unfortunately, this computation is slow, becoming a bottleneck as the imaging technology improves. Read More


Animation is ubiquitous in visualization systems, and a common technique for creating these animations is the transition. In the transition approach, animations are created by smoothly interpolating a visual attribute between a start and end value, reaching the end value after a specified duration. This approach works well when each transition for an attribute is allowed to finish before the next is triggered, but performs poorly when a new transition is triggered before the current transition has finished. Read More


We present here the result of continuation work, performed to further fulfill the vision we outlined in [Harel,Lekien,P\'eba\"y-2017] for the visualization and analysis of tree-based adaptive mesh refinement (AMR) simulations, using the hypertree grid paradigm which we proposed. The first filter presented hereafter implements an adaptive approach in order to accelerate the rendering of 2-dimensional AMR grids, hereby solving the problem posed by the loss of interactivity that occurs when dealing with large and/or deeply refined meshes. Specifically, view parameters are taken into account, in order to: on one hand, avoid creating surface elements that are outside of the view area; on the other hand, utilize level-of-detail properties to cull those cells that are deemed too small to be visible with respect to the given view parameters. Read More


We present SceneSuggest: an interactive 3D scene design system providing context-driven suggestions for 3D model retrieval and placement. Using a point-and-click metaphor we specify regions in a scene in which to automatically place and orient relevant 3D models. Candidate models are ranked using a set of static support, position, and orientation priors learned from 3D scenes. Read More


Designing 3D scenes is currently a creative task that requires significant expertise and effort in using complex 3D design interfaces. This effortful design process starts in stark contrast to the easiness with which people can use language to describe real and imaginary environments. We present SceneSeer: an interactive text to 3D scene generation system that allows a user to design 3D scenes using natural language. Read More


We present a data-driven approach that colorizes 3D furniture models and indoor scenes by leveraging indoor images on the internet. Our approach is able to colorize the furniture automatically according to an example image. The core is to learn image-guided mesh segmentation to segment the model into different parts according to the image object. Read More


We consider the problem of extracting curve skeletons of three-dimensional, elongated objects given a noisy surface, which has applications in agricultural contexts such as extracting the branching structure of plants. We describe an efficient and robust method based on breadth-first search that can determine curve skeletons in these contexts. Our approach is capable of automatically detecting junction points as well as spurious segments and loops. Read More


Single-Photon Avalanche Diodes (SPAD) are affordable photodetectors, capable to collect extremely fast low-energy events, due to their single-photon sensibility. This makes them very suitable for time-of-flight-based range imaging systems, allowing to reduce costs and power requirements, without sacrifizing much temporal resolution. In this work we describe a computational model to simulate the behaviour of SPAD sensors, aiming to provide a realistic camera model for time-resolved light transport simulation, with applications on prototyping new reconstructions techniques based on SPAD time-of-flight data. Read More


Researchers often summarize their work in the form of scientific posters. Posters provide a coherent and efficient way to convey core ideas expressed in scientific papers. Generating a good scientific poster, however, is a complex and time consuming cognitive task, since such posters need to be readable, informative, and visually aesthetic. Read More


We present here the first systematic treatment of the problems posed by the visualization and analysis of large-scale, parallel adaptive mesh refinement (AMR) simulations on an Eulerian grid. When compared to those obtained by constructing an intermediate unstructured mesh with fully described connectivity, our primary results indicate a gain of at least 80\% in terms of memory footprint, with a better rendering while retaining similar execution speed. In this article, we describe the key concepts that allow us to obtain these results, together with the methodology that facilitates the design, implementation, and optimization of algorithms operating directly on such refined meshes. Read More


This paper presents the three scripting commands and main functionalities of a novel character animation environment called CHASE. CHASE was developed for enabling inexperienced programmers, animators, artists, and students to animate in meaningful ways virtual reality characters. This is achieved by scripting simple commands within CHASE. Read More


In this paper we address the issue of designing developable surfaces with Bezier patches. We show that developable surfaces with a polynomial edge of regression are the set of developable surfaces which can be constructed with Aumann's algorithm. We also obtain the set of polynomial developable surfaces which can be constructed using general polynomial curves. Read More


In this paper, we cover the process of integrating Large-Scale Direct Simultaneous Localization and Mapping (LSD-SLAM) algorithm into our existing AR stereo engine, developed for our modified "Augmented Reality Oculus Rift". With that, we are able to track one of our realworld cameras which are mounted on the rift, within a complete unknown environment. This makes it possible to achieve a constant and full augmentation, synchronizing our 3D movement (x, y, z) in both worlds, the real world and the virtual world. Read More


We address the problem of synthesizing new video frames in an existing video, either in-between existing frames (interpolation), or subsequent to them (extrapolation). This problem is challenging because video appearance and motion can be highly complex. Traditional optical-flow-based solutions often fail where flow estimation is challenging, while newer neural-network-based methods that hallucinate pixel values directly often produce blurry results. Read More


The Easy Path Wavelet Transform is an adaptive transform for bivariate functions (in particular natural images) which has been proposed in [1]. It provides a sparse representation by finding a path in the domain of the function leveraging the local correlations of the function values. It then applies a one dimensional wavelet transform to the obtained vector, decimates the points and iterates the procedure. Read More


A general concept of 3D volumetric visualization systems is described based on 3D discrete voxel scenes (worlds) representation. Definitions of 3D discrete voxel scene (world) basic elements and main steps of the image synthesis algorithm are formulated. An algorithm for solving the problem of the voxelized world 3D image synthesis, intended for the systems of volumetric spatial visualization, is proposed. Read More


The article presents a general concept of the organization of pseudo three dimension visualization of graphics and video content for three dimension visualization systems. The steps of algorithms for solving the problem of synthesis of three dimension stereo images based on two dimension images are introduced. The features of synthesis organization of standard format of three dimension stereo frame are presented. Read More


This paper presents a realization of the approach to spatial three Dimension stereo of visualization of three Dimension images with use parallel Graphics processing unit (GPU). The experiments of realization of synthesis of images of a 3D stage by a method of trace of beams on GPU with Compute Unified Device Architecture have shown that 60 % of the time is spent for the decision of a computing problem approximately, the major part of time (40 %) is spent for transfer of data between the central processing unit and GPU for calculations and the organization process of visualization. The study of the influence of increase in the size of the GPU network at the speed of calculations showed importance of the correct task of structure of formation of the parallel computer network and general mechanism of parallelization. Read More


Unlike the conventional first-order network (FoN), the higher-order network (HoN) provides a more accurate description of transitions by creating additional nodes to encode higher-order dependencies. However, there exists no visualization and exploration tool for the HoN. For applications such as the development of strategies to control species invasion through global shipping which is known to exhibit higher-order dependencies, the existing FoN visualization tools are limited. Read More


In this study, a method to construct a full-colour volumetric display is presented using a commercially available inkjet printer. Photoreactive luminescence materials are minutely and automatically printed as the volume elements, and volumetric displays are constructed with high resolution using easy-to-fabricate means that exploit inkjet printing technologies. The results experimentally demonstrate the first prototype of an inkjet printing-based volumetric display composed of multiple layers of transparent films that yield a full-colour three-dimensional (3D) image. Read More


We show that the equations of reinforcement learning and light transport simulation are related integral equations. Based on this correspondence, a scheme to learn importance while sampling path space is derived. The new approach is demonstrated in a consistent light transport simulation algorithm that uses reinforcement learning to progressively learn where light comes from. Read More


Dealing with visualizations containing large data set is a challenging issue and, in the field of Information Visualization, almost every visual technique reveals its drawback when visualizing large number of items. To deal with this problem we introduce a formal environment, modeling in a virtual space the image features we are interested in (e.g, absolute and relative density, clusters, etc. Read More


We develop a framework for rendering photographic images, taking into account display limitations, so as to optimize perceptual similarity between the rendered image and the original scene. We formulate this as a constrained optimization problem, in which we minimize a measure of perceptual dissimilarity, the Normalized Laplacian Pyramid Distance (NLPD), which mimics the early stage transformations of the human visual system. When rendering images acquired with higher dynamic range than that of the display, we find that the optimized solution boosts the contrast of low-contrast features without introducing significant artifacts, yielding results of comparable visual quality to current state-of-the art methods with no manual intervention or parameter settings. Read More


Photographers routinely compose multiple manipulated photos of the same scene (layers) into a single image, which is better than any individual photo could be alone. Similarly, 3D artists set up rendering systems to produce layered images to contain only individual aspects of the light transport, which are composed into the final result in post-production. Regrettably, both approaches either take considerable time to capture, or remain limited to synthetic scenes. Read More


In this paper a new system for piecewise primitive surface recovery on point clouds is presented, which allows a novice user to sketch areas of interest in order to guide the fitting process. The algorithm is demonstrated against a benchmark technique for autonomous surface fitting, and, contrasted against existing literature in user guided surface recovery, with empirical evidence. It is concluded that the system is an improvement to the current documented literature for its visual quality when modelling objects which are composed of piecewise primitive shapes, and, in its ability to fill large holes on occluded surfaces using free-form input. Read More


In this paper, a new approach to solve the cubic B-spline curve fitting problem is presented based on a meta-heuristic algorithm called " dolphin echolocation ". The method minimizes the proximity error value of the selected nodes that measured using the least squares method and the Euclidean distance method of the new curve generated by the reverse engineering. The results of the proposed method are compared with the genetic algorithm. Read More


This paper presents Poisson vector graphics, an extension of the popular first-order diffusion curves, for generating smooth-shaded images. Armed with two new types of primitives, namely Poisson curves and Poisson regions, PVG can easily produce photorealistic effects such as specular highlights, core shadows, translucency and halos. Within the PVG framework, users specify color as the Dirichlet boundary condition of diffusion curves and control tone by offsetting the Laplacian, where both controls are simply done by mouse click and slider dragging. Read More


Non-invasive steady-state visual evoked potential (SSVEP) based brain-computer interface (BCI) systems offer high bandwidth compared to other BCI types and require only minimal calibration and training. Virtual reality (VR) has been already validated as effective, safe, affordable and motivating feedback modality for BCI experiments. Augmented reality (AR) enhances the physical world by superimposing informative, context sensitive, computer generated content. Read More


Exploring and editing colors in images is a common task in graphic design and photography. However, allowing for interactive recoloring while preserving smooth color blends in the image remains a challenging problem. We present LayerBuilder, an algorithm that decomposes an image or video into a linear combination of colored layers to facilitate color-editing applications. Read More


In this paper, we propose a framework to reconstruct 3D models from raw scanned points by learning the prior knowledge of a specific class of objects. Unlike previous work that heuristically specifies particular regularities and defines parametric models, our shape priors are learned directly from existing 3D models under a framework based on affinity propagation. Given a database of 3D models within the same class of objects, we build a comprehensive library of 3D local shape priors. Read More


Style transfer is an important task in which the style of a source image is mapped onto that of a target image. The method is useful for synthesizing derivative works of a particular artist or specific painting. This work considers targeted style transfer, in which the style of a template image is used to alter only part of a target image. Read More


In this paper, we present a novel method for rapid high-resolution range sensing using green-blue stripe pattern. We use green and blue for designing high-frequency stripe projection pattern. For accurate and reliable range recovery, we identify the stripe patterns by our color-stripe segmentation and unwrapping algorithms. Read More


This paper constructs a continuous localized tight frame on a two-dimensional simplex $T^{2}$ using orthogonal polynomials. We then use quadrature rules on $T^{2}$ to construct discrete tight framelets. Fast algorithms for discrete tight framelet transforms on $T^{2}$ are given, which have the same computational steps as the fast Fourier transforms on the simplex $T^{2}$. Read More


Color transfer between images uses the statistics information of image effectively. We present a novel approach of local color transfer between images based on the simple statistics and locally linear embedding. A sketching interface is proposed for quickly and easily specifying the color correspondences between target and source image. Read More


This article introduces a new notion of optimal transport (OT) between tensor fields, which are measures whose values are positive semidefinite matrices (PSD). This "quantum"' formulation of OT corresponds to a relaxed version of the classical Kantorovich transport problem, where the fidelity between the input PSD-valued measures is captured using the geometry of the Von-Neumann quantum entropy. We propose a quantum-entropic regularization of the resulting convex optimization problem, which can be solved efficiently using an iterative scaling algorithm. Read More


In this manuscript, inspired by a simpler reformulation of primary sample space Metropolis light transport, we derive a novel family of general Markov chain Monte Carlo algorithms called charted Metropolis-Hastings, that introduces the notion of sampling charts to extend a given sampling domain and making it easier to sample the desired target distribution and escape from local maxima through coordinate changes. We further apply the novel algorithms to light transport simulation, obtaining a new type of algorithm called charted Metropolis light transport, that can be seen as a bridge between primary sample space and path space Metropolis light transport. The new algorithms require to provide only right inverses of the sampling functions, a property that we believe crucial to make them practical in the context of light transport simulation. Read More


The EditLens is an interactive lens technique that supports the editing of graphs. The user can insert, update, or delete nodes and edges while maintaining an already existing layout of the graph. For the nodes and edges that are affected by an edit operation, the EditLens suggests suitable locations and routes, which the user can accept or adjust. Read More


With the development of range sensors such as LIDAR and time-of-flight cameras, 3D point cloud scans have become ubiquitous in computer vision applications, the most prominent ones being gesture recognition and autonomous driving. Parsimony-based algorithms have shown great success on images and videos where data points are sampled on a regular Cartesian grid. We propose an adaptation of these techniques to irregularly sampled signals by using continuous dictionaries. Read More


Artistic style transfer is an image synthesis problem where the content of an image is reproduced with the style of another. Recent works show that a visually appealing style transfer can be achieved by using the hidden activations of a pretrained convolutional neural network. However, existing methods either apply (i) an optimization procedure that works for any style image but is very expensive, or (ii) an efficient feedforward network that only allows a limited number of trained styles. Read More