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We use a popular fictional disease, zombies, in order to introduce techniques used in modern epi-
demiology modelling, and ideas and techniques used in the numerical study of critical phenomenon.
We consider variants of zombie models, from fully connected continuous time dynamics to a full scale
exact stochastic dynamic simulation of a zombie outbreak on the continental United States. Along
the way, we offer a closed form analytical expression for the fully connected differential equation,
and demonstrate that the single person per site two dimensional square lattice version of zombies
lies in the percolation universality class. We end with a quantitative study of the full scale US
outbreak, including the average susceptibility of different geographical regions.

I. INTRODUCTION

Zombies captivate the imagination. The idea of a
deadly disease that not only kills its hosts, but turns
those hosts into deadly vectors for the disease is scary
enough to fuel an entire genre of horror stories and films.
But at its root, zombism is just that: a (fictional) disease,
and so should be amenable to same kind of analysis and
study that more traditional diseases have long benefited
from.

Much scholarly attention has focused on more tradi-
tional human diseases [I0], but recently, academic atten-
tion has turned some amount of focus towards zombies
as a unique and interesting modification of classic disease
models. One of the first academic accounts of zombies
was the 2009 article by Munz et al. [12], in which an
early form of a compartmental model of zombism was in-
troduced. Since then, there have been several interesting
papers published including works that perform Bayesian
estimations of the zombie disease parameters [22], look
at how emotional factors impact the spread of zombies
[16], using zombies to gain insight into models of politics
[9], or the interaction of a zombie epidemic and social
dynamics [I1],[19]. Additional essays can be found in two
books [4,20], both collections of academic essays centered
around zombism.

Besides the academic papers, zombies have seen a bit of
a resurgence in fiction. Of particular note are the works
of Max Brooks, including a very detailed Zombie Survival
Guide [1], as well as an oral history of the first zombie
war [2] in a hypothesized post outbreak world. In both
these works Brooks discusses lots of details of zombies
and their behavior often glossed over in other media. In
particular, he makes the connection to disease explicit,
describing zombies as the result of a hypothetical virus:
Solanum.

Zombies form a wonderful model system to illus-
trate modern epidemiological tools drawn from statistical
mechanics, computational chemistry, and mathematical
modeling. It also forms an ideal vehicle for public out-
reach: the Center for Disease Control uses preparation
for a zombie apocalypse [I7, [I8] to promote emergency

preparedness. In this work, we will build up to a full-
scale simulation of a zombie outbreak in the continen-
tal United States, with realistic values drawn from the
literature and popular culture (section [V| simulation ac-
cessible online [I4]). Before that, we shall use statistical
mechanics to scrutinize the threshold of zombie virulence
that determines whether humanity survives (section [[V]).
Preceding that, we shall show how methods from com-
putational chemistry can be used to simulate every indi-
vidual heroic encounter between a human and a zombie
(section . But we begin by describing and analyzing
a simple model of zombies (the SZR model) — the sim-
plest and most natural generalization to the classic STR
(Susceptible-Infected-Recovered) model used to describe
infectious disease spread in epidemiology.

II. SZR MODEL

We start with a simple model of zombies, the SZR
model. There are three compartments in the model: §
represents the susceptible population, in this case the un-
infected humans; Z represents the infected state, in this
case zombies; and R represents our removed state, in
this case zombies that have been terminated by humans
(canonically by destroying their brain so as to render
them inoperable). There are two transitions possible: a
human can become infected if they are bitten by a zom-
bie, and a zombie can be destroyed by direct action by a
human. There are two parameters governing these tran-
sitions: [, the bite parameter determines the probability
by which a zombie will bite a human if they are in con-
tact, and k the kill parameter that gives the probability
that a human kills the zombie. Rendered as a system of
coupled differential equations, we obtain, for a particular
interaction site:

S=-BSZ (1)
Z=(B-kr)SZ (2)
R=rSZ (3)

Notice that these interactions are density dependent, in
the sense that the rate at which we convert humans to



zombies and kill zombies is dependent on the total count
of zombies and humans in this site. This is in contrast
with most models of human diseases, which frequently
adopt frequency dependent interactions wherein S, Z, R
would be interpreted as the fraction of the population in
that state.

This distinction will become stark once we consider
large simulations with very inhomogeneous populations.
By claiming that zombies can be modeled by a single bite
parameter [ that itself is a rate per person per unit time,
we are claiming that a zombie in a block with 5,000 peo-
ple would be one hundred times as effective at infecting
new zombies as a zombie in a block with fifty people,
similarly the zombie in question would be killed one hun-
dred times faster. This would seem false for an ordinary
disease like the flu, but in the case of zombies, we argue
that it is appropriate, as zombies directly seek out hosts
to infect, at which point the human and zombie engage
in a dual to the (un)death.

To ease analysis we can nondimensionalize the equa-
tions by choosing a relevant population size N, and re-
casting in terms of the dimensionless time parameter
7 =tBN and dimensionless virulence a = k/3
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Unlike a traditional disease (e.g., as modeled by STR),
for the zombie model, we have a stable configuration
when either the human or the zombie population is de-
feated (S =0 or Z = 0). Furthermore, unlike SIR, SZR

admits an analytical solution, assuming R(0) = 0, and
with Zy = Z(0), So = S(0):

P=2Zy+(1-a)S (5)

p= P = o -1 (6)
1) = e @
Z(r) =P — f(7) (8)
s(r) = L0 )
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Given the analytical solution, it is clear to see that the
sign of P governs whether we will eventually have humans
or zombies in the final state. If a« < 1, P > 0, so

lim f(r) =0 (10)
TIL)IIE.IOZ(T) =P= Z()+(1—CK)SO (11)
lim S(r) =0 (12)

and we will always flow to a final state composed of en-
tirely zombies and no humans, where P denotes the num-
ber of zombies that survives.

If however, a > 1, then humans are more effective at
killing zombies than zombies are at biting humans, but
if we start with enough zombies in the initial state, we
can still convert all of the humans before they have time
to kill all of the zombies.

In fact, we can recast the dynamics in terms of the
variables P = Z + (1 — «)S and x = S/Z to gain further
insights. First note that

% —P =7 1 (1-a)s (13)
:(1—a)SWZ—(1—a)SWZ=O (14)

So that P is a constant of the dynamics. As for x

- a-wis (16)
= 2ty a7)
= X (15)

So that if we choose N = |P|, we end up with the very
simple dynamics:

Pl(r)=0 (19)
Pry=Po=Z(1)+(1—-a)S(7)=Zp + (1 — )So

(20)

xvoz{li o (21)
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w=3 (23)

Here we see that the dynamics is simply an exponential
decay or increase in the ratio of humans to zombies y =
S/Z. The final populations in either case are easy to see
due to the conservation of P. If zombies win we have

Zoo = ZO + (]. - a)So (24)

And if humans win

Zo

Soozso_a—l

(25)



1. SIR model

This dynamics should be compared to the similarly
nondimensionlized density dependent STR model:

ds ST

TN (26)
dl S

i (N - “) g 27)
dR

Where here 7 = t3N as above, but u = v/(3N) = Ry ",
because in the STR model our infected population re-
covers on its own. This should be contrasted with SZR,
where the process of infection and recovery have the same
functional form, depending on the product SZ. This p is
the inverse of the usual Ry parameter used to denote the
infectivity of the STR, here used to make a closer analogy
to the SZR model. It is this parameter that principally
governs whether we have an outbreak or not. Unlike the
« parameter for SZR which depends only on our dis-
ease constants (3, k, the relevant virulence for the density
dependent STR model (1) has a population dependence.

Notice that while the only stable configuration for the
SIR model is when we have no infected population (I =
0), the SZR model is stable when either the humans or
zombies are depleted (S =0 or Z = 0).

Beyond that, the STR model does not admit a closed
form analytical solution, but we can find a parametric
solution by dividing the first equation by the third, re-
vealing.

_(R(1)—Rq)

S(1) = Spe” BN (29)

And using the observation that in the limit of infinite
time, no infected population can persist, we can choose
N to be the total population

So+1Io+ Ry =N = Seo + Reo (30)

and so obtain a transcendental equation for the recovered
population at long times.

_ (Roo—Rg)

Roo =N — Spe™ v (31)

Unlike the SZ R model, here we see that no matter how
virulent the disease is, the epidemic will be self-limiting,
and there will always have some susceptibles left at the
end of the outbreak. This is a stark qualitative difference
between zombies and more traditional SIR models, aris-
ing from the fact that the “recovery” of zombies is itself
dependent on the presence of susceptibles.

To visually compare the difference, in Figure [I] we’ve
shown example analytic dynamics for both SIR and
SZR
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FIG. 1. Example analytical dynamics for the STR and SZR
models with an initial population of 200 people, 199 unin-
fected and 1 infected. The (susceptible, infected, removed)
population is shown in (blue, red, black). The SZR results
are solid lines while the STR results are lighter lines. For both
models 7 = tBN where N was taken to be the total popula-
tion. For the SZ R model o was chosen to be 0.6, while for the
STR model p was chosen to be 0.6 to show similar evolutions.
Notice that in this case, in SZ R the human population disap-
pears and we are left with zombies in the end, while the STR
model is self limiting, and only a fraction of the population
ever becomes infected.

200 : S (SIR)
: I I I I (SIR)
— R (SIR)
L e — S (S7R)
45 ~ = 7 (SZR)
1 100 ) EE A . W Em— — R(57R)
3, bz
¢
a
O F-mbn Sl N P SR .
0 I I . !
0 5 10 15 20 25 30
T

FIG. 2. Example Gillespie dynamics for the SIR and SZR
models with the same parameter settings as Figure The
(susceptible, infected, removed) population is shown in (blue,
red, black). The SZR results are solid lines while the SIR
results are lighter lines. The two simulations were run with
the same seed so as to match their dynamics at early times.

III. STOCHASTIC SIMULATION

While most previous studies modeling zombie popula-
tion dynamics have been deterministic, things get more
interesting when we try to model discrete populations.
By treating the number of zombies and humans as contin-
uous variables in the last section, we are ignoring the ran-



dom fluctuations that arise in small populations: even a
ferociously virulent zombie infestation might fortuitously
be killed early on by happy accident. Similar problems
arise in chemical reactions: reactions involving two types
of proteins in a cell can be described by chemical reac-
tion kinetics evolving their concentrations (like our SZR
equations , but if the number of such proteins is small,
accurate predictions must simulate the individual binary
reactions (each zombie battling each human). Interpret-
ing our SZR transitions as reaction rates, gives us a sys-
tem akin to a chemical reaction with two possible tran-
sitions:

When a human and zombie are in contact, the probabil-
ity of a bite in a small period of time is given by the bite
rate and the size of the populations of the two species
(8SZ dt), and similarly for the probability of a kill. In
order to efliciently simulate this dynamics, we use Gille-
spie dynamics [7], which efficiently uses the computer to
sequentially calculate the result of each one-on-one bat-
tle.

The stochasticity gives more character to the simula-
tion. The fully connected continuous dynamics modelled
by the differential equation is straight forward: either the
humans win and kill all of the zombies, or the zombies
win and bite all of the humans. While the continuous ap-
proximation may be appropriate at intermediate stages
of the infection where the total population is large and
there are a non-trivial number of infected individuals,
we will eventually be interested in simulating an actual
outbreak on an inhomogeneous population lattice, where
every new site will start with a single infected individ-
ual. But even though we may be interested in modeling
the outbreak case (o < 1), we would like to allow the
possibility that the humans manage to defeat the out-
break before it really takes off. The stochastic Gillespie
dynamics allows for this possibility.

In Figure[2] we’ve shown an example of a single stochas-
tic simulation using the same parameter settings as those
used in Figure[l] The stochastic trajectory overall tracks
the analytic result, but at points in the simulation there
may be more or less zombies than anticipated if the dice
fall that way.

Another implication of stochastic dynamics is that it is
not always guaranteed that an a < 0 outbreak will take
over the entire susceptible population. For the parameter
settings used in Figure [[] and 2, namely o = 0.6 with a
population of 200 and one infected individual to start,
the zombies win only 40% of the time. Additionally, the
number of zombies we end with isn’t fixed; as shown in
Figure

In fact, we can solve for the probability that an o < 1
simulation will go extinct in the limit of large popula-
tions. We are interested in Py, the probability that the
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FIG. 3. Distribution for final zombies over 100,000 Gillespie
runs of the same settings as Figure Not pictured are the
60% of runs that end with no zombies in the final state. Com-
pare these to the analytical result, in which the final popula-
tion of zombies would be 81.
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FIG. 4. The observed fraction of simulations that end in

an extinction for the zombie outbreak, for 1,000 runs of 10%
individuals at various values of a (eqn. . The observed
extinction probabilities agree with the expectation that they
should go as «, here shown as the dashed blue line. This is
the same behavior as the STR model.

outbreak goes extinct. At the very beginning of the sim-
ulation, there is only one zombie, who will be killed with
probability k/(8 + k). If we kill the first zombie before
he bites anyone, we guarantee extinction. Otherwise, the
zombie will bite another human, at which point we will
have two independent zombie lines that we need to each
cause to go extinct, which will occur with probability

P2.,. This allows us to solve:
K B
Pexy = ml + mpgxt (32)
K
Pext:B:Oé. (33)

The probability of extinction is just given by our dimen-
sionless inverse virulence «. In Figure [ we’ve shown the



observed extinction probabilities for 1,000 Gillespie runs
of a population of 10# individuals at various values of «,
and overlaid our expected dependence of a.

This same extinction probability (Pexy = 4 = Ry D is
observed for the SIR model [I0]. This is not a coinci-
dence. In fact, in precisely the limit that is important for
studying the probability of an extinction event, namely at
early times with very large populations, the SZR model
and STR are effectively the same, since the population of
susceptibles (5) is nearly constant. Writing .S as Sop— 9.5,
we have:

iz SoZ 557
Al _ (| uN\ Sl 1
dT( SO)N (LN +08)% . (35)

Here as 65 — 0, the two models are the same with o =
uN/Sy, another indication that the density dependent
STR model’s virulence is dependent on population size.

To get a better sense of the effect of the stochasticity,
we can look at the mean fractional population in each
state for various settings of o and choices for initial pop-
ulation size. The results are shown in Figure
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FIG. 5. Results from many Gillespie runs. One thousand dif-
ferent simulations are run for each cell. Each simulation starts
with a single zombie or infected individual. The runs are run
until they naturally terminate, either because the susceptible
population is deleted, the zombie population is gone, or there
are no more infected individuals. Each cell is colored accord-
ing to the mean fraction of the population occurring in each
state. The top row is for SZ R simulations and the bottom row
is for SIR simulations. In both cases IV is chosen to be 100.
Here the stark contrast between density dependent SZR and
SIR is made apparent. Notice that density-dependent SIR
is very strongly population dependent.

Shown are the fractional populations in the final state
left for both the SZR model (top row) and SIR model
(bottom row) for different parameter combinations of «
and the initial population. In all cases, the N parameter
was chosen to be 100. For each pixel, 1,000 indepen-
dently seeded runs of Gillespie dynamics were calculated
until completion. Looking at the SZ R results in the top
row, we can see that the dynamics is fairly independent
of population size once the population size gets above
around 100 individuals. The population dependence for
lower population sizes is an effect of the stochasticity. We
can clearly see a transition in the susceptible population
near = 1 corresponding to where our continuous dy-
namics would show a sharp boundary. Here the boundary
is blurred, again due to the stochasticity. The final dead
zombie population R remains small for all values of «; for
extremely virulent zombies a < 1, very few will be killed
by the humans before all of the humans are converted,
while in the other extreme few zombies are created so
there are few to be killed.

Contrast these results with the density dependent STR
dynamics shown in the second row. There can be no in-
fected individuals left in the end, so only the fraction of S
and R in the final state are shown. The two transitions in
STR couple differently to the population of infected and
susceptible. While our nondimensionalized SZR model
has Z' = (1 — &)SZ/N, our nondimensionlized SIR has
I' = (S/N — p)I. This creates a very strong population
dependence. The transition observed in the S population
is largely independent of u, except on the very small end.
When we move to inhomogeneous population lattices this
means that for the density dependent STR model, the
most important parameter governing whether a particu-
lar site has a breakout infection is the population of that
site on the lattice.

IV. CRITICAL BEHAVIOR OF LATTICE
MODEL

Until now, we’ve considered fully connected popula-
tions, where any infected individual can infect any sus-
ceptible individual. But surely, a zombie in New York
cannot bite someone in Los Angeles. Studies of the spa-
tial spread of infectious diseases is one of the applica-
tions of network science; social diseases spread among
intimate contacts, Ebola spreads by personal contact in
a network of caregivers, influenza can be spread by direct
contact, through the air or by hand-to-mouth, hand-to-
eye or hand-to-nose contact after exposure to a contami-
nated surface. For most diseases, ‘long bonds’ dominate
the propagation to distant sites [I3] — airplane flights take
Ebola to new continents. Zombies do not fly airplanes, so
our model is closer in spirit to the spread of certain agri-
cultural infestations, where the disease spreads across a
lattice of sites along the two-dimensional surface of the
Earth (although not those in which pathogens are trans-
ported long distances by atmospheric currents).



To begin, we will consider a two dimensional lattice,
where each site contains a single individual. Each in-
dividual is allowed to be in one of three states: S, Z,
or R. The infection spreads through nearest neighbor
bonds only. That is, a zombie can bite or be killed by
any susceptible individuals in each of the four touching
sites.

To make direct contact with our zombie model, the
rate at which an susceptible cell is bitten is given by 82
where Z is the number of zombie neighbors (since S is
one), and the rate at which a zombie site is killed is kS
where S is the number of susceptible neighbors.

Because all state transitions in the SZR model de-
pend only on Z—S contacts, for computational efficiency,
we need only maintain a queue of all Z—S bonds, that is
connections along which a human and zombie can in-
teract. At each step of the simulation, one of these
Z—-S bonds is chosen at random, and with probability
B/(B+ k) = 1/(1 + @), we bite the human, marking it
as a zombie and visiting each of its neighbors. If any of
its neighbors are human, we add that link to our queue.
With probability «/(8 + &) = a/(1 4+ o) we kill the zom-
bie, removing any of its links to neighboring humans from
the queue. This process matches the stochastic dynamics
of our zombie model operating on the lattice.

Simulating zombie outbreaks on fixed lattices, there is
qualitatively different behavior for small a and large .
When « is large, the zombies do not spread very far, al-
ways being defeated by their neighboring humans. When
a is very small, the zombies seem to grow until they in-
fect the entire lattice. This suggests evidence of a phase
transition. Technically, the presence of a phase transition
would mean that if we could simulate our model on an in-
finite lattice, there should be some critical « («.), above
which any outbreak will necessarily terminate. Below the
critical value, we have the possibility (assuming we don’t
go extinct) of having the infection grow without bound,
infecting a finite fraction of individuals, even on the in-
finite lattice. The SIR model has been demonstrated
to undergo such a phase transition, and we expect the
zombie model does as well.

The study of critical phenomenon, includes a series of
techniques and analyses that enable us to study the prop-
erty of these hypothetical phase transitions even on finite
lattices. A major theme of critical phase transitions is
that with the order parameter (the parameter governing
the transition, in this case «) set to precisely the critical
value, models show scale free behavior, meaning there
is no natural length scale to the dynamics, and various
physical parameters all are governed by power laws.

With a chosen to be precisely at the critical value, we
expect to see fractal like growth (Fig. E[) Note that there
are holes (surviving pockets of humans) of all sizes in the
figure. This reflects the proximity to the threshold: the
battle between zombies and humans is so evenly matched,
that one gets an emergent scale invariance in the survival
patterns. This is in keeping with the critical phenomenon
studies of the STR model, which shows a similar critical

behavior and phase transition []].

FIG. 6. Example cluster resulting from the single population
per site square lattice zombie model with periodic boundary
conditions near the critical point a. = 0.437344654(21) on a
lattice of size 2048 x 2048.

Systems near critical points with this kind of scale
invariance fall into wniversality classes. Different sys-
tems (say, a real disease outbreak and a simple com-
putational model) can in many ways act precisely the
same on large scales near their transitions (allowing us to
predict behavior without knowing the details of zombie-
human (anti)social interactions). The SIR model on a
two-dimensional lattice with a single person per site falls
into the percolation universality class [3], though details
of its cluster growth can differ [2I]. Given that the SZR
model has two second order couplings, it is of interest
whether it falls into the same percolation universality
class.

To extract the scaling behavior of our zombie infesta-
tion, we study the distribution P(s,«), the probability
that a single zombie will generate an outbreak of size s
at inverse virulence a. (An outbreak will be a fractal
cluster in two dimensions, with ragged boundaries if it
dies out before reaching the entire world.) At o = «,
where the zombies and humans are equally matched, we
have an emergent scale invariance. A large outbreak will
appear to almost stop several times — it can be viewed
as a sequence of medium-sized outbreaks triggering one
another. Medium-sized outbreaks are composed of small
outbreaks, which are in turn composed of tiny outbreaks.
At threshold, each of these scales (large, medium, small)
is related to the lower scale (medium, small, tiny) in the
same fashion. Let us oversimplify to say that at critical-
ity an outbreak of size 3s is formed by what would have



been three smaller outbreaks of size s which happened
to trigger one another, and these in turn are formed by
what would have been three outbreaks of size s/3. If the
probabilities and form of this mutual triggering is the
same at each scale, then it would not surprise us that
many properties of the outbreaks would be the same, af-
ter rescaling the sizes by a factor of three. In particular,
we expect at the critical point to find the probabilities of
avalanches of size s to be related to the probabiities at
size $/3 by some factor f:

P(s,a.) = fP(s/3,ac). (36)
This formula implies that P(s,a.) x s°7, with 7 =
log(1/f)/log(3). The distribution of epidemic infection
rates is a power law.

Figure [7] shows a thorough test of this dependence for
our zombie model, following a procedure akin to that
of reference [2I]. We simulated a zombie outbreak on
a two-dimensional lattice with periodic boundary condi-
tions starting with a single zombie. With the outbreak
sizes following a power law distribution, the probability
that a site belongs to a cluster of size ng is P; = sng, so
that at the critical point P, ~ s'~7. Integrating from s
to oo, the probability that a point belongs to a cluster
of at least s in size P>, should at the critical point it-
self follow a powerlaw: P>g ~ s277. To find our critical
point a., we ran many simulations until our integrated
cluster size distribution followed a power law, using the
interpolation methods of reference [21I] to get a precise
estimate of the critical point.

For zombies on a two dimensional lattice, this critical
point occurs at a, = 0.437344654(21), the resulting in-
tegrated cluster size distribution is shown at the top of
Fig. lﬂ Percolation theory predicts 7 = 187/91 in two di-
mensions, and we test that prediction in the bottom part
of Fig. [7l Here, if we were precisely at the critical point
and the SZR model was in the percolation universality
class, we would have a perfectly straight line. Notice
the small scale our experimental results vary over several
order of magnitude. The clear agreement convincingly
shows that the zombie model on the two dimensional lat-
tice is in the percolation university class.

As an additional check, we computed the fractal di-
mension of our clusters near the critical point using box
counting, a distribution for which is shown in Figure [§
We find a fractal dimension D = 1.8946(14), compared
to the exact percolation value of D = 91/48 = 1.895833.

Why did we need such an exhaustive test (many
decades of scaling, many digits in our estimate of a.)?
On the one hand, a much smaller simulation could have
told us that there was emergent scale invariance and frac-
tal behavior near the transition; one or two decades of
scaling should be convincing. But it turns out that there
are multiple different universality classes for this kind of
invasion process, and their exponents 7 and D are rather
similar. And a small error in a, can produce large shifts
in the resulting fits for 7 and D — demanding efficient
programming and fast computers to achieve a definitive

FIG. 7. The cumulative distribution of epidemic sizes for the
two dimensional zombie model near the critical virulence. The
critical point found was a. = 0.437344654(21). The top plot
shows the probability of a site being in a cluster of at least s
in size (P>s). The fact that it forms a straight line on a log-
log plot indicates that P>, is a power law, and the slope is
2 — 7. For comparison, the blue line shows the powerlaw cor-
responding to the percolation critical exponent: 7 = 187/91.
The bottom plot shows the same data times s™~2 using the
exponent from percolation theory. The plot is very nearly flat
suggesting the percolation exponent accurately describes the
zombie model.

answer.

We conclude that the single person per site zombie
infestation, near the critical virulence, will on long length
scales develop spatial infestation patterns that are well
described by two-dimensional percolation theory.

V. US SCALE SIMULATION OF ZOMBIE
OUTBREAK

Having explored the general behavior of the zombie
model analytically, stochastically and on homogeneous
single person lattices, we are prepared to simulate a full
scale zombie outbreak.



FIG. 8. A histogram of the observed fractal dimension of the
zombie epidemic clusters as measured by box counting. These
give a measured value of D = 1.8946(14), consist with the
exact percolation fractal dimension of D = 91/48 = 1.895833.

A. Inhomogeneous Population Lattice

We will attempt to simulate a zombie outbreak occur-
ring in the United States. This will be similar to our lat-
tice simulation, but with an inhomogeneous population
lattice. We based our lattice on code available for creat-
ing a “dot map” based off the 2010 US Census data [I5].
The 2010 Census released census block level data, detail-
ing the location and population of 11,155,486 different
blocks in the United States. To cast these blocks down
to a square grid, we assigned each of the 306,675,005 re-
ported individuals a random location inside their corre-
sponding census block, then gridded the population into
a 1500 x 900 grid based on latitude and longitude co-
ordinates. The resulting population lattice can be seen
in the top half of Figure [0] You will see the presence
of many empty grids, especially throughout the western
United States. This disconnects the east and west coasts
in a clearly artificial pattern — our zombies in practice
will gradually wander through the empty grid points. To
add in lattice connectivity, we did six iterations of binary
closing (an image processing technique) on the popula-
tion lattice and added it to the original. The effect was
to add a single person to many vacant sites, taking our
total population up to 307,407,336. The resulting popu-
lation map is shown in the bottom half of Figure[d] This
grid size corresponds to roughly 3 km square boxes. The
most populated grid site is downtown New York City,
with 299,616 individuals. The mean population of the
occupied grid sites is 420, the median population of an
occupied site is 13.

B. Augmented Model

In order to more ‘realistically’ simulate a zombie out-
break, we made two additions to our simplified SZR
model. The first was to add a latent state E (Exposed).
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FIG. 9. A 1500 x 900 grid of the 2010 US Census Data. The
above figure gives the raw results. Notice the multitude of
squares with no people in them in the Western United States.
The bottom figure shows the resulting map after 6 steps of
binary closing added to the original population.

The second was to introduce motion for the zombies.
Considered as a system of differential equations, we now
have:

S; = —BSiZ; (37)
E"i = —vE; (38)
Z; =vE; — kS Z; (39)
R = kS Z; (40)
Zi=nY % -, (1)

)



or as a set of reactions:

BSiZ;

(Si, Bi) —— (Si = L Ei + 1) (42)

2z B) Pz 1B -1 (43)

(Zi, ;) LN (Zi—1,Ri+1) (44)

Wiy (2.2) LDz -1z, +1) . (45)

Here i denotes a particular site on our lattice. (j) denotes

a sum over nearest neighbor sites, (i j) denotes that i and
j are nearest neighbors. In this model, zombies and hu-
mans only interact if they are at the same site, but the
zombies diffuse on the lattice, being allowed to move to
a neighboring site with probability proportional to their
population and some diffusion constant (). We assume
that the humans do not move, not only for computa-
tional efficiency, but because, as we will see, the zombie
outbreaks tend to happen rather quickly, and we expect
large transportation networks to shut down in the first
days, pinning most people to their homes. The addition
of a latent state coincides with the common depiction
that once a human has been bitten, it typically takes
some amount of time before they die and reanimate as a
zombie. If a human is bitten, they transition to the E
state, where at some constant rate (v) they convert into
the zombie state.

To choose our parameters we tried to reflect com-
mon depictions of zombies in movies. In the work of
Witkowski and Blais [22], they performed a Bayesian fit
of a very similar SZR model to two films, Night of the
Living Dead, and Shawn of the Dead. In both cases, the
observed a was very close to 0.8. This means that the
zombies in the films are 1.25 times more effective at bit-
ing humans than the humans are at killing the zombies.
We will adopt this value for our simulation. For our la-
tent state, we adopt a value close to that reported for
Shawn of the Dead, namely a half life of 30 minutes. To
set our movement parameter, we estimate that zombies
move at around 1 ft/sec. To estimate the rate at which
the zombies will transition from one cell to the next, we
assume that the zombies behave like a random gas inside
the cell, so that the probability that a zombie will cross
a cell boundary is roughly iL—ZQLUAt, that is, one fourth
of the zombies within vAt of the edge will move across
that edge in a small amount of time. This suggests a
value of p of 0.0914 /hr. This corresponds to an average
time between transitions of around 11 hours, which for a
zombie stumbling around a 3 km block agrees with our
intuitions. Finally, to set a rate for our bite parameter,
we similarly assume that the zombies are undergoing ran-
dom motion inside the cell at 1 ft/sec, and they interact
with a human anytime they come within 100 feet. We
can then estimate the rate at which humans and zombies
will interact as SZ RZQN, which corresponds to a choice of
B of around 3.6 x 1073 /hr. Another way to make sense
of these parameter choices is to ask how many suscepti-
ble individuals must be in a cell before a single zombie

£]3.6 x 107% /hr/person
«|0.8

K|laB
n
I

2 /hr
0.0914 /hr

TABLE I. The parameters chosen for our US-scale simula-
tions of a zombie outbreak. These parameters were chosen to
correspond with standard depictions of zombies and simple
physical estimations explained in the main text.

has a higher rate for biting a human than transitioning
to a neighboring cell. For our choice of parameters, this
gives

NB =4y = N ~102. (46)

This corresponds to a low population density of
~ 11 people/km?, again agreeing with our intuition. All
of our parameter choices are summarized in Table [I}

C. Simulation Details

To effectively simulate an outbreak at this scale, we
employed the Next Reaction Method of [6]. We main-
tained a priority queue of all possible reactions, assign-
ing each the time at which the reaction would take place,
an exponentially distributed random number with scale
set by the rate for the reaction. At each time step of
the simulation, we popped the next reaction off of the
queue, and updated the state of the relevant squares on
our grid. Whenever population counts changed, we of
course needed to update the times for the reactions that
depend on those population counts. This method re-
mained efficient for simulating the entire US. However,
at late times a large amount of simulation time was spent
simulating the diffusion of the zombies back and forth be-
tween highly populated states. We could have achieved
additional computational efficiency by adopting the time
dependent propensity function approach of Fu et al. [5].

D. Results

With the simulation in place, we are now in a position
to simulate a full scale zombie outbreak. We first consider
an outbreak that began with one in every million indi-
viduals starting in the Exposed (F) state in the United
States. For a single instance the overall populations are
shown in Figure This looks similar to the analytical
outbreaks we saw in Figure (1, but with a steeper rate
of initial infection and some slight perturbations to the
curves. The total population curves however hide most of
the interesting features. In Figure[l1| we attempt to give
a sense of how this outbreak evolves, showing the state
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FIG. 10. The S (blue), Z (red), R (black), and E (green)
populations as a function of time for a full scale zombie out-
break in the continental United States starting with one in
every million people infected.

of the United States at various times after the outbreak
begins.

As you can see, for the parameters we chose, most of
the United States population has been turned into zom-
bies by the first week, while the geographic map doesn’t
necessarily seem all that compelling. In the early stages
of the outbreak, while the population is roughly homo-
geneous, the zombie plague spreads out in roughly uni-
form circles, where the speed of the infection is tied to
the local population density. Infestations on the coasts,
with their higher population density, have spread far-
ther than those near the center of the country. After
several weeks, the map exhibits stronger anisotropy, as
we spread over larger geographical areas and the zombie
front is influenced by large inhomogeneities in population
density. After four weeks, much of the United States has
fallen, but it takes a very long time for the zombies to
diffuse and capture the remaining portions of the United
States. Even four months in, remote areas of Montana
and Nevada remain zombie free.

To investigate the geographical characteristics of the
outbreak, we must move beyond a single instance of an
outbreak and study how different regions are affected in
an ensemble of outbreaks. If it takes a month to develop
and distribute an effective vaccine (or an effective strat-
egy for zombie decapitation), what regions should one lo-
cate the zombie-fighting headquarters? We ran 7,000 dif-
ferent 28-day zombie outbreaks in the continental United
States starting with a single individual. A single instance
of one of these outbreaks originating in New York City
is shown in Figure

By averaging over all of these runs, we can start to
build a zombie susceptibility map, as shown in Figure
In the top plot, we show the probability that the
given cell is overrun by zombies after seven days. Here
you can clearly see that there are certain regions — those
surrounding populous metropolitan areas — that are at a
greater risk. This is partly because those regions have
lots of individuals who could potential serve as patient
zero, and partly due to the rapid spread of zombies in

10

(a) 1 Day

(g) 2 Months

(h) 4 Months

FIG. 11. Simulation of a zombie outbreak in the continental
United States. Initially one in every million individuals was
infected at random. Results are shown above at (a) one day,
(b) two days, (c) one week, (d) two weeks, (e) three weeks,
(f) four weeks, and (g) two months after the outbreak begins.
Shown here are the population of susceptible individuals (S)
in blue, scaled logarithmically, zombies in red and removed in
green. All three channels are superimposed.

those areas. In the bottom plot, we plot the probability
that the cell is overrun, but at the 28 day mark.

After 28 days, it is not the largest metropolitan ar-
eas that suffer the greatest risk, but the regions located
between large metropolitan areas. For instance, in Cali-
fornia it is the region near Bakersfield in the San Joaquin
Valley that is at the greatest risk as this area will be over-
run by zombies whether they originate in the San Fran-
cisco area or the Los Angeles / San Diego area. The area
with the greatest one month zombie risk is north eastern
Pennsylvania, itself being susceptible to outbreaks origi-
nating in any of the large metropolitan areas on the east
coast.



FIG. 12.
break that started in New York City. Here blue represents
humans, red represents zombies and green represents dead
zombies. The three color channels have been laid on top of
one another.

Status of the United States 28 days after an out-

VI. CONCLUSION

Zombies offer a fun framework for introducing many
modern concepts from epidemiology and critical phe-
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nomenon. We have described and analyzed various zom-
bie models, from one describing deterministic dynamics
in a well-mixed system to a full scale US epidemic. We
have given a closed form analytical solution to the well-
mixed dynamic differential equation model. We com-
pared the stochastic dynamics to a comparable density-
dependent STR model. We investigated the critical phe-
nomenon of the single person per site two-dimensional
square lattice zombie model and demonstrated it is in
the percolation universality class. We ran full scale sim-
ulations of a zombie epidemic, incorporating each human
in the continental United States, and discussed the geo-
graphical implications for survival.
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