# Statistics - Machine Learning Publications (50)

## Search

## Statistics - Machine Learning Publications

Bayesian inference for complex models is challenging due to the need to explore high-dimensional spaces and multimodality and standard Monte Carlo samplers can have difficulties effectively exploring the posterior. We introduce a general purpose rejection-free ensemble Markov Chain Monte Carlo (MCMC) technique to improve on existing poorly mixing samplers. This is achieved by combining parallel tempering and an auxiliary variable move to exchange information between the chains. Read More

The nearest neighbor method together with the dynamic time warping (DTW) distance is one of the most popular approaches in time series classification. This method suffers from high storage and computation requirements for large training sets. As a solution to both drawbacks, this article extends learning vector quantization (LVQ) from Euclidean spaces to DTW spaces. Read More

A recurring problem faced when training neural networks is that there is typically not enough data to maximize the generalization capability of deep neural networks(DNN). There are many techniques to address this, including data augmentation, dropout, and transfer learning. In this paper, we introduce an additional method which we call Smart Augmentation and we show how to use it to increase the accuracy and reduce overfitting on a target network. Read More

Symmetric nonnegative matrix factorization (SymNMF) has important applications in data analytics problems such as document clustering, community detection and image segmentation. In this paper, we propose a novel nonconvex variable splitting method for solving SymNMF. The proposed algorithm is guaranteed to converge to the set of Karush-Kuhn-Tucker (KKT) points of the nonconvex SymNMF problem. Read More

There is growing interest in applying machine learning methods to Electronic Medical Records (EMR). Across different institutions, however, EMR quality can vary widely. This work investigated the impact of this disparity on the performance of three advanced machine learning algorithms: logistic regression, multilayer perceptron, and recurrent neural network. Read More

How can we train a statistical mixture model on a massive data set? In this paper, we show how to construct coresets for mixtures of Gaussians and natural generalizations. A coreset is a weighted subset of the data, which guarantees that models fitting the coreset also provide a good fit for the original data set. We show that, perhaps surprisingly, Gaussian mixtures admit coresets of size polynomial in dimension and the number of mixture components, while being independent of the data set size. Read More

We consider the question of inferring true answers associated with tasks based on potentially noisy answers obtained through a micro-task crowd-sourcing platform such as Amazon Mechanical Turk. We propose a generic, non-parametric model for this setting: for a given task $i$, $1\leq i \leq T$, the response of worker $j$, $1\leq j\leq W$ for this task is correct with probability $F_{ij}$, where matrix $F = [F_{ij}]_{i\leq T, j\leq W}$ may satisfy one of a collection of regularity conditions including low rank, which can express the popular Dawid-Skene model; piecewise constant, which occurs when there is finitely many worker and task types; monotonic under permutation, when there is some ordering of worker skills and task difficulties; or Lipschitz with respect to an associated latent non-parametric function. This model, contains most, if not all, of the previously proposed models to the best of our knowledge. Read More

The maximum correntropy criterion (MCC) has recently been successfully applied in robust regression, classification and adaptive filtering, where the correntropy is maximized instead of minimizing the well-known mean square error (MSE) to improve the robustness with respect to outliers (or impulsive noises). Considerable efforts have been devoted to develop various robust adaptive algorithms under MCC, but so far little insight has been gained as to how the optimal solution will be affected by outliers. In this work, we study this problem in the context of parameter estimation for a simple linear errors-in-variables (EIV) model where all variables are scalar. Read More

Word embeddings are a powerful approach for unsupervised analysis of language. Recently, Rudolph et al. (2016) developed exponential family embeddings, which cast word embeddings in a probabilistic framework. Read More

We present the first treatment of the arc length of the Gaussian Process (GP) with more than a single output dimension. GPs are commonly used for tasks such as trajectory modelling, where path length is a crucial quantity of interest. Previously, only paths in one dimension have been considered, with no theoretical consideration of higher dimensional problems. Read More

Recently, research on accelerated stochastic gradient descent methods (e.g., SVRG) has made exciting progress (e. Read More

When using reinforcement learning (RL) algorithms to evaluate a policy it is common, given a large state space, to introduce some form of approximation architecture for the value function (VF). The exact form of this architecture can have a significant effect on the accuracy of the VF estimate, however, and determining a suitable approximation architecture can often be a highly complex task. Consequently there is a large amount of interest in the potential for allowing RL algorithms to adaptively generate (i. Read More

Convolutional Neural Networks have been a subject of great importance over the past decade and great strides have been made in their utility for producing state of the art performance in many computer vision problems. However, the behavior of deep networks is yet to be fully understood and is still an active area of research. In this work, we present an intriguing behavior: pre-trained CNNs can be made to improve their predictions by structurally perturbing the input. Read More

Machine learning techniques are being increasingly used as flexible non-linear fitting and prediction tools in the physical sciences. Fitting functions that exhibit multiple solutions as local minima can be analysed in terms of the corresponding machine learning landscape. Methods to explore and visualise molecular potential energy landscapes can be applied to these machine learning landscapes to gain new insight into the solution space involved in training and the nature of the corresponding predictions. Read More

While modern day web applications aim to create impact at the civilization level, they have become vulnerable to adversarial activity, where the next cyber-attack can take any shape and can originate from anywhere. The increasing scale and sophistication of attacks, has prompted the need for a data driven solution, with machine learning forming the core of many cybersecurity systems. Machine learning was not designed with security in mind, and the essential assumption of stationarity, requiring that the training and testing data follow similar distributions, is violated in an adversarial domain. Read More

Cross-validation is one of the most popular model selection methods in statistics and machine learning. Despite its wide applicability, traditional cross-validation methods tend to select overfitting models, unless the ratio between the training and testing sample sizes is much smaller than conventional choices. We argue that such an overfitting tendency of cross-validation is due to the ignorance of the uncertainty in the testing sample. Read More

Dictionary learning and component analysis are part of one of the most well-studied and active research fields, at the intersection of signal and image processing, computer vision, and statistical machine learning. In dictionary learning, the current methods of choice are arguably K-SVD and its variants, which learn a dictionary (i.e. Read More

The least-squares support vector machine is a frequently used kernel method for non-linear regression and classification tasks. Here we discuss several approximation algorithms for the least-squares support vector machine classifier. The proposed methods are based on randomized block kernel matrices, and we show that they provide good accuracy and reliable scaling for multi-class classification problems with relatively large data sets. Read More

Health care is one of the most exciting frontiers in data mining and machine learning. Successful adoption of electronic health records (EHRs) created an explosion in digital clinical data available for analysis, but progress in machine learning for healthcare research has been difficult to measure because of the absence of publicly available benchmark data sets. To address this problem, we propose four clinical prediction benchmarks using data derived from the publicly available Medical Information Mart for Intensive Care (MIMIC-III) database. Read More

We provide new results concerning noise-tolerant and sample-efficient learning algorithms under $s$-concave distributions over $\mathbb{R}^n$ for $-\frac{1}{2n+3}\le s\le 0$. The new class of $s$-concave distributions is a broad and natural generalization of log-concavity, and includes many important additional distributions, e.g. Read More

Recent work on end-to-end automatic speech recognition (ASR) has shown that the connectionist temporal classification (CTC) loss can be used to convert acoustics to phone or character sequences. Such systems are used with a dictionary and separately-trained Language Model (LM) to produce word sequences. However, they are not truly end-to-end in the sense of mapping acoustics directly to words without an intermediate phone representation. Read More

We present UBEV, a simple and efficient reinforcement learning algorithm for fixed-horizon episodic Markov decision processes. The main contribution is a proof that UBEV enjoys a sample-complexity bound that holds for all accuracy levels simultaneously with high probability, and matches the lower bound except for logarithmic terms and one factor of the horizon. A consequence of the fact that our sample-complexity bound holds for all accuracy levels is that the new algorithm achieves a sub-linear regret of O(sqrt(SAT)), which is the first time the dependence on the size of the state space has provably appeared inside the square root. Read More

In this paper, we analyze the fundamental conditions for low-rank tensor completion given the separation or tensor-train (TT) rank, i.e., ranks of unfoldings. Read More

This paper describes a method for clustering data that are spread out over large regions and which dimensions are on different scales of measurement. Such an algorithm was developed to implement a robotics application consisting in sorting and storing objects in an unsupervised way. The toy dataset used to validate such application consists of Lego bricks of different shapes and colors. Read More

We study the use of randomized value functions to guide deep exploration in reinforcement learning. This offers an elegant means for synthesizing statistically and computationally efficient exploration with common practical approaches to value function learning. We present several reinforcement learning algorithms that leverage randomized value functions and demonstrate their efficacy through computational studies. Read More

This work employs a Gaussian mixture model (GMM) to jointly analyse two traditional emission-line classification schemes of galaxy ionization sources: the Baldwin-Phillips-Terlevich (BPT) and W$_{H\alpha}$ vs. [NII]/H$\alpha$ (WHAN) diagrams, using spectroscopic data from the Sloan Digital Sky Survey Data Release 7 and SEAGal/STARLIGHT datasets. We apply a GMM to empirically define classes of galaxies in a three-dimensional space spanned by the log [OIII]/H\beta, log [NII]/H\alpha, and log EW(H{\alpha}) optical parameters. Read More

Kernel embeddings of distributions and the Maximum Mean Discrepancy (MMD), the resulting distance between distributions, are useful tools for fully nonparametric two-sample testing and learning on distributions. However, it is rarely that all possible differences between samples are of interest -- discovered differences can be due to different types of measurement noise, data collection artefacts or other irrelevant sources of variability. We propose distances between distributions which encode invariance to additive symmetric noise, aimed at testing whether the assumed true underlying processes differ. Read More

Multivariate binary distributions can be decomposed into products of univariate conditional distributions. Recently popular approaches have modeled these conditionals through neural networks with sophisticated weight-sharing structures. It is shown that state-of-the-art performance on several standard benchmark datasets can actually be achieved by training separate probability estimators for each dimension. Read More

We investigate different strategies for active learning with Bayesian deep neural networks. We focus our analysis on scenarios where new, unlabeled data is obtained episodically, such as commonly encountered in mobile robotics applications. An evaluation of different strategies for acquisition, updating, and final training on the CIFAR-10 dataset shows that incremental network updates with final training on the accumulated acquisition set are essential for best performance, while limiting the amount of required human labeling labor. Read More

Learning in models with discrete latent variables is challenging due to high variance gradient estimators. Generally, approaches have relied on control variates to reduce the variance of the REINFORCE estimator. Recent work (Jang et al. Read More

In online discussion communities, users can interact and share information and opinions on a wide variety of topics. However, some users may create multiple identities, or sockpuppets, and engage in undesired behavior by deceiving others or manipulating discussions. In this work, we study sockpuppetry across nine discussion communities, and show that sockpuppets differ from ordinary users in terms of their posting behavior, linguistic traits, as well as social network structure. Read More

The cardinality constraint is an intrinsic way to restrict the solution structure in many domains, for example, sparse learning, feature selection, and compressed sensing. To solve a cardinality constrained problem, the key challenge is to solve the projection onto the cardinality constraint set, which is NP-hard in general when there exist multiple overlapped cardiaiality constraints. In this paper, we consider the scenario where overlapped cardinality constraints satisfy a Three-view Cardinality Structure (TVCS), which reflects the natural restriction in many applications, such as identification of gene regulatory networks and task-worker assignment problem. Read More

Thermodynamic integration (TI) for computing marginal likelihoods is based on an inverse annealing path from the prior to the posterior distribution. In many cases, the resulting estimator suffers from high variability, which particularly stems from the prior regime. When comparing complex models with differences in a comparatively small number of parameters, intrinsic errors from sampling fluctuations may outweigh the differences in the log marginal likelihood estimates. Read More

Convex sparsity-promoting regularizations are ubiquitous in modern statistical learning. By construction, they yield solutions with few non-zero coefficients, which correspond to saturated constraints in the dual optimization formulation. Working set (WS) strategies are generic optimization techniques that consist in solving simpler problems that only consider a subset of constraints, whose indices form the WS. Read More

Many problems in image processing and computer vision (e.g. colorization, style transfer) can be posed as 'manipulating' an input image into a corresponding output image given a user-specified guiding signal. Read More

It is generally accepted that all models are wrong -- the difficulty is determining which are useful. Here, a useful model is considered as one that is capable of combining data and expert knowledge, through an inversion or calibration process, to adequately characterize the uncertainty in predictions of interest. This paper derives conditions that specify which simplified models are useful and how they should be calibrated. Read More

Variational inference methods for latent variable statistical models have gained popularity because they are relatively fast, can handle large data sets, and have deterministic convergence guarantees. However, in practice it is unclear whether the fixed point identified by the variational inference algorithm is a local or a global optimum. Here, we propose a method for constructing iterative optimization algorithms for variational inference problems that are guaranteed to converge to the $\epsilon$-global variational lower bound on the log-likelihood. Read More

Current approaches for Knowledge Distillation (KD) either directly use training data or sample from the training data distribution. In this paper, we demonstrate effectiveness of 'mismatched' unlabeled stimulus to perform KD for image classification networks. For illustration, we consider scenarios where this is a complete absence of training data, or mismatched stimulus has to be used for augmenting a small amount of training data. Read More

We study primal-dual type stochastic optimization algorithms with non-uniform sampling. Our main theoretical contribution in this paper is to present a convergence analysis of Stochastic Primal Dual Coordinate (SPDC) Method with arbitrary sampling. Based on this theoretical framework, we propose Optimality Violation-based Sampling SPDC (ovsSPDC), a non-uniform sampling method based on Optimality Violation. Read More

Recent advances in deep learning for object recognition in natural images has prompted a surge of interest in applying a similar set of techniques to medical images. Most of the initial attempts largely focused on replacing the input to such a deep convolutional neural network from a natural image to a medical image. This, however, does not take into consideration the fundamental differences between these two types of data. Read More

The recently developed variational autoencoders (VAEs) have proved to be an effective confluence of the rich representational power of neural networks with Bayesian methods. However, most work on VAEs use a rather simple prior over the latent variables such as standard normal distribution, thereby restricting its applications to relatively simple phenomena. In this work, we propose hierarchical nonparametric variational autoencoders, which combines tree-structured Bayesian nonparametric priors with VAEs, to enable infinite flexibility of the latent representation space. Read More

DNN-based cross-modal retrieval has become a research hotspot, by which users can search results across various modalities like image and text. However, existing methods mainly focus on the pairwise correlation and reconstruction error of labeled data. They ignore the semantically similar and dissimilar constraints between different modalities, and cannot take advantage of unlabeled data. Read More

A general formulation of optimization problems in which various candidate solutions may use different feature-sets is presented, encompassing supervised classification, automated program learning and other cases. A novel characterization of the concept of a "good quality feature" for such an optimization problem is provided; and a proposal regarding the integration of quality based feature selection into metalearning is suggested, wherein the quality of a feature for a problem is estimated using knowledge about related features in the context of related problems. Results are presented regarding extensive testing of this "feature metalearning" approach on supervised text classification problems; it is demonstrated that, in this context, feature metalearning can provide significant and sometimes dramatic speedup over standard feature selection heuristics. Read More

In this work, we investigate a novel training procedure to learn a generative model as the transition operator of a Markov chain, such that, when applied repeatedly on an unstructured random noise sample, it will denoise it into a sample that matches the target distribution from the training set. The novel training procedure to learn this progressive denoising operation involves sampling from a slightly different chain than the model chain used for generation in the absence of a denoising target. In the training chain we infuse information from the training target example that we would like the chains to reach with a high probability. Read More

Recently we proposed a general, ensemble-based feature engineering wrapper (FEW) that was paired with a number of machine learning methods to solve regression problems. Here, we adapt FEW for supervised classification and perform a thorough analysis of fitness and survival methods within this framework. Our tests demonstrate that two fitness metrics, one introduced as an adaptation of the silhouette score, outperform the more commonly used Fisher criterion. Read More

Dance Dance Revolution (DDR) is a popular rhythm-based video game. Players perform steps on a dance platform in synchronization with music as directed by on-screen step charts. While many step charts are available in standardized packs, users may grow tired of existing charts, or wish to dance to a song for which no chart exists. Read More

Deep Neural Networks (DNNs) have achieved remarkable performance on a variety of pattern-recognition tasks, particularly visual classification problems, where new algorithms reported to achieve or even surpass the human performance. In this paper, we test the state-of-the-art DNNs with negative images and show that the accuracy drops to the level of random classification. This leads us to the conjecture that the DNNs, which are merely trained on raw data, do not recognize the semantics of the objects, but rather memorize the inputs. Read More

Machine learning has matured to the point to where it is now being considered to automate decisions in loan lending, employee hiring, and predictive policing. In many of these scenarios however, previous decisions have been made that are unfairly biased against certain subpopulations (e.g. Read More

The sufficient decrease technique has been widely used in deterministic optimization, even for non-convex optimization problems, such as line-search techniques. Motivated by those successes, we propose a novel sufficient decrease framework for a class of variance reduced stochastic gradient descent (VR-SGD) methods such as SVRG and SAGA. In order to make sufficient decrease for stochastic optimization, we design a new sufficient decrease criterion. Read More

We demonstrate that, for a range of state-of-the-art machine learning algorithms, the differences in generalisation performance obtained using default parameter settings and using parameters tuned via cross-validation can be similar in magnitude to the differences in performance observed between state-of-the-art and uncompetitive learning systems. This means that fair and rigorous evaluation of new learning algorithms requires performance comparison against benchmark methods with best-practice model selection procedures, rather than using default parameter settings. We investigate the sensitivity of three key machine learning algorithms (support vector machine, random forest and rotation forest) to their default parameter settings, and provide guidance on determining sensible default parameter values for implementations of these algorithms. Read More