Solar and Stellar Astrophysics Publications (50)


Solar and Stellar Astrophysics Publications

We conduct three-dimensional hydrodynamical simulations of two opposite jets launched obliquely to the orbital plane around an asymptotic giant branch (AGB) star and within its dense wind, and demonstrate the formation of a `messy' planetary nebula (PN), namely, a PN lacking any type of symmetry (highly irregular). In building the initial conditions we assume that a tight binary system orbits the AGB star, and that the orbital plane of the tight binary system is inclined to the orbital plane of the binary system and the AGB star (the triple system plane). We further assume that the accreted mass on to the tight binary system forms an accretion disk around one of the stars, and that the plane of the disk is tilted to the orbital plane of the triple system. Read More

Affiliations: 1Queen's University Belfast, 2Queen's University Belfast, 3Queen's University Belfast, 4Queen's University Belfast, 5Queen's University Belfast, 6Harvard-Smithsonian Center for Astrophysics, 7Ohio University, 8University of California, Santa Cruz, 9Las Cumbres Observatory Global Telescope, 10University of Hawaii at Manoa, 11University of Hawaii at Manoa, 12University of Hawaii at Manoa, 13University of Hawaii at Manoa

In this study, we present observations of a type Iax supernova, PS1-12bwh, discovered during the Pan-STARRS1 3$\pi$-survey. Our analysis was driven by previously unseen pre-maximum, spectroscopic heterogeneity. While the light curve and post-maximum spectra of PS1-12bwh are virtually identical to those of the well-studied type Iax supernova, SN 2005hk, the $-$2 day spectrum of PS1-12bwh does not resemble SN 2005hk at a comparable epoch; instead, we found it to match a spectrum of SN 2005hk taken over a week earlier ($-$12 day). Read More

The mass-loss process from evolved stars is a key ingredient for our understanding of many fields of astrophysics, including stellar evolution and the chemical enrichment of the interstellar medium via stellar yields. One the main unsolved questions is the geometry of the mass-loss process. Taking advantage of the results from the Herschel Mass loss of Evolved StarS (MESS) programme, we initiated a coordinated effort to characterise the geometry of mass loss from evolved red giants at various spatial scales. Read More

Amongst O-type stars with detected magnetic fields, the fast rotator in the close binary called Plaskett's star shows a variety of unusual properties. Since strong binary interactions are believed to have occurred in this system, one may wonder about their potential role in generating magnetic fields. Stokes V spectra collected with the low-resolution FORS2 and high-resolution ESPaDOnS and Narval spectropolarimeters were therefore used to search for magnetic fields in 15 interacting or post-interaction massive binaries. Read More


Eclipsing binaries offer a unique opportunity to determine basic stellar properties. With the advent of wide-field camera and all-sky time-domain surveys, thousands of eclipsing binaries have been charted via light curve classification, yet their fundamental properties remain unexplored, mainly due to the extensive efforts needed for spectroscopic follow-ups. In this paper we present the discovery of a short period (P=0. Read More

We present a strongly interacting quadruple system associated with the K2 target EPIC 220204960. The K2 target itself is a Kp = 12.7 magnitude star at Teff ~ 6100 K which we designate as "B-N" (blue northerly image). Read More

We present a spectral analysis of the Hubble Space Telescope Cosmic Origins Spectrograph spectrum of the southern VY Scl nova-like variable BB Doradus, obtained as part of a Cycle 20 {\it HST/COS} survey of accreting white dwarfs in cataclysmic variables. BB Dor was observed with {\it COS} during an intermediate state with a low mass accretion rate, thereby allowing an estimate of the white dwarf temperature. The results of our spectral analysis show that the white dwarf is a significant far ultraviolet component with a temperature of $\sim$35,000-$\sim$50,000$~$K, assuming a $0. Read More

The old novae V533 Her (Nova Her 1963), DI Lac (Nova Lac 1910) and RR Pic (Nova Pic 1891) are in (or near) their quiescent stage following their nova explosions and continue to accrete at a high rate in the aftermath of their explosions. They exhibit continua that are steeply rising into the FUV as well as absorption lines and emission lines of uncertain origin. All three have FUSE spectra which offer not only higher spectral resolution but also wavelength coverage extending down to the Lyman Limit. Read More

The cyclic behaviour of (O-C) residuals of eclipse timings in the sdB+M eclipsing binary NSVS 14256825 was previously attributed to one or two Jovian-type circumbinary planets. We report 83 new eclipse timings that not only fill in the gaps in those already published but also extend the time span of the (O-C) diagram by three years. Based on the archival and our new data spanning over more than 17 years we re-examined the up to date system (O-C). Read More

Core-collapse supernovae (CCSNe) are the extremely energetic deaths of massive stars. They play a vital role in the synthesis and dissemination of many heavy elements in the universe. In the past, CCSN nucleosynthesis calculations have relied on artificial explosion methods that do not adequately capture the physics of the innermost layers of the star. Read More

The late-type Be star $\beta$ CMi is remarkably stable compared to other Be stars that have been studied. This has led to a realistic model of the outflowing Be disk by Klement et al. These results showed that the disk is likely truncated at a finite radius from the star, which Klement et al. Read More

We present hydrodynamic simulations of the hot cocoon produced when a relativistic jet passes through the gamma-ray burst (GRB) progenitor star and its environment, and we compute the lightcurve and spectrum of the radiation emitted by the cocoon. The radiation from the cocoon has a nearly thermal spectrum with a peak in the X-ray band, and it lasts for a few minutes in the observer frame; the cocoon radiation starts at roughly the same time as when $\gamma$-rays from a burst trigger detectors aboard GRB satellites. The isotropic cocoon luminosity ($\sim 10^{47}$ erg s$^{-1}$) is of the same order of magnitude as the X-ray luminosity of a typical long-GRB afterglow during the plateau phase. Read More

The projection factor (p-factor) is an essential component of the classical Baade-Wesselink (BW) technique, that is commonly used to determine the distances to pulsating stars. It is a multiplicative parameter used to convert radial velocities into pulsational velocities. As the BW distances are linearly proportional to the p-factor, its accurate calibration for Cepheids is of critical importance for the reliability of their distance scale. Read More

Magnetic turbulence in the solar wind is treated from the point of view of electrodynamics. This can be done based on the use of Poynting's theorem attributing all turbulent dynamics to the spectrum of turbulent conductivity. For two directions of propagation of the turbulent fluctuations of the electromagnetic field with respect to the mean plus external magnetic fields an expression is constructed for the spectrum of turbulent dissipation. Read More

Using the high-quality observations of the Solar Dynamics Observatory, we present the interaction of two filaments (F1 and F2) in a long filament channel associated with twin coronal mass ejections (CMEs) on 2016 January 26. Before the eruption, a sequence of rapid cancellation and emergence of the magnetic flux has been observed, which likely triggered the ascending of the west filament (F1). The east footpoints of rising F1 moved toward the east far end of the filament channel, accompanying with post-eruption loops and flare ribbons. Read More

We report on the measurement of the trigonometric parallaxes of 1612 MHz hydroxyl masers around two asymptotic giant branch stars, WX Psc and OH138.0+7.2, using the NRAO Very Long Baseline Array with in-beam phase referencing calibration. Read More

FUors are young stellar objects experiencing large optical outbursts due to highly enhanced accretion from the circumstellar disk onto the star. FUors are often surrounded by massive envelopes, which play a significant role in the outburst mechanism. Conversely, the subsequent eruptions might gradually clear up the obscuring envelope material and drive the protostar on its way to become a disk-only T Tauri star. Read More

The origin of the activity in the solar corona is a long-standing problem in solar physics. Recent satellite observations, such as Hinode, Solar Dynamics Observatory (SDO), Interface Region Imaging Spectrograph (IRIS), show the detail characteristics of the solar atmosphere and try to reveal the energy transfer from the photosphere to the corona through the magnetic fields and its energy conversion by various processes. However, quantitative estimation of energy transfer along the magnetic field is not enough. Read More

We present 450 and 850 micron submillimetre continuum observations of the IC5146 star-forming region taken as part of the JCMT Gould Belt Survey. We investigate the location of bright submillimetre (clumped) emission with the larger-scale molecular cloud through comparison with extinction maps, and find that these denser structures correlate with higher cloud column density. Ninety-six individual submillimetre clumps are identified using FellWalker and their physical properties are examined. Read More

With a high value of heliocentric radial velocity, a retrograde orbit, and being suspected to have an extragalactic origin, NGC 3201 is an interesting globular cluster for kinematical studies. Our purpose is to calculate the relative proper motions (PMs) and membership probability for the stars in the wide region of globular cluster NGC 3201. Proper motion based membership probabilities are used to isolate the cluster sample from the field stars. Read More

Pre-main sequence stars are variable sources. In stars with disks, this variability is related to the morphology of the inner circumstellar region (<0.1 AU) and that of the photosphere and corona, all impossible to be spatially resolved with present day techniques. Read More

Although for many solar physics problems the desirable or meaningful boundary is the radial component of the magnetic field $B_{\rm r}$, the most readily available measurement is the component of the magnetic field along the line-of-sight to the observer, $B_{\rm los}$. As this component is only equal to the radial component where the viewing angle is exactly zero, some approximation is required to estimate $B_{\rm r}$ at all other observed locations. In this study, a common approximation known as the "$\mu$-correction", which assumes all photospheric field to be radial, is compared to a method which invokes computing a potential field that matches the observed $B_{\rm los}$, from which the potential field radial component, $B_{\rm r}^{\rm pot}$ is recovered. Read More

The distance to the planetary system OGLE-2015-BLG-0966L and the separation between the planet and its host star are ambiguous due to an ambiguity in the distance to the source star (Street et al. 2016). We attempt to break this degeneracy by measuring the systemic radial velocity of the source star measured from a spectrum taken while the source was highly magnified. Read More

We report on subarcsecond observations of complex organic molecules (COMs) in the high-mass protostar IRAS20126+4104 with the Plateau de Bure Interferometer in its most extended configurations. In addition to the simple molecules SO, HNCO and H2-13CO, we detect emission from CH3CN, CH3OH, HCOOH, HCOOCH3, CH3OCH3, CH3CH2CN, CH3COCH3, NH2CN, and (CH2OH)2. SO and HNCO present a X-shaped morphology consistent with tracing the outflow cavity walls. Read More

Asteroseismic parameters allow us to measure the basic stellar properties of field giants observed far across the Galaxy. Most of such determinations are, up to now, based on simple scaling relations involving the large frequency separation, \Delta\nu, and the frequency of maximum power, \nu$_{max}$. In this work, we implement \Delta\nu\ and the period spacing, {\Delta}P, computed along detailed grids of stellar evolutionary tracks, into stellar isochrones and hence in a Bayesian method of parameter estimation. Read More

The Tarantula region in the Large Magellanic Cloud contains the richest population of spatially resolved massive O-type stars known so far. This unmatched sample offers an opportunity to test models describing their main-sequence evolution and mass-loss properties. Using ground-based optical spectroscopy obtained in the framework of the VLT-FLAMES Tarantula Survey (VFTS), we aim to determine stellar, photospheric and wind properties of 72 presumably single O-type giants, bright giants and supergiants and to confront them with predictions of stellar evolution and of line-driven mass-loss theories. Read More

Grid-based hydrodynamics simulations of circumstellar disks are often performed in the curvilinear coordinate system, in which the center of the computational domain coincides with the motionless star. However, the center of mass may be shifted from the star due to the presence of any non-axisymmetric mass distribution. As a result, the system exerts a gravity force on the star, causing the star to move in response, which can affect the evolution of the circumstellar disk. Read More

Photometric observations in Sloan g' and i' bands of four W UMa binaries, V796 Cep, V797 Cep, CSS J015341.9+381641 and NSVS 3853195, are presented. Our observations showed that CSS J015404. Read More

[Abridged] We present spectroscopic observations in H$_{2}$O, CO and related species with \textit{Herschel} HIFI and PACS, as well as ground-based follow-up with the JCMT and APEX in CO, HCO$^{+}$ and isotopologues, of a sample of 49 nearby ($d<$500\,pc) candidate protostars. These data are used to study the outflow and envelope properties of these sources. We also compile their continuum SEDs in order to constrain their physical properties. Read More

In order to provide a better basis for the study of mechanisms of nucleosynthesis of the light elements beyond hydrogen and helium in the oldest stars, the abundances of C, O, Mg, Si, P, S, K, and Ca have been derived from UV-HST and visible-ESO high resolution spectra in the old, very metal-poor star HD 84937, at a metallicity that is 1/200 that of the Sun's. For this halo main-sequence turnoff star, the abundance determination of P and S are the first published determinations. The LTE profiles of the lines were fitted to the observed spectra. Read More

We investigate numerically Alfv\'en waves propagating along an axisymmetric and non-isothermal solar flux tube embedded in the solar atmosphere. The tube magnetic field is current-free and diverges with height, and the waves are excited by a periodic driver along the tube magnetic field lines. The main results are that the two wave variables, the velocity and magnetic field perturbations in the azimuthal direction, behave differently as a result of gradients of physical parameters along the tube. Read More

XMM-Newton has deeply changed our picture of X-ray emission of hot, massive stars. High-resolution X-ray spectroscopy as well as monitoring of these objects helped us gain a deeper insight into the physics of single massive stars with or without magnetic fields, as well as of massive binary systems, where the stellar winds of both stars interact. These observations also revealed a number of previously unexpected features that challenge our understanding of the dynamics of the stellar winds of massive stars. Read More

A new collection of photodissociation and photoionisation cross sections for 102 atoms and molecules of astrochemical interest has been assembled, along with a brief review of the basic processes involved. These have been used to calculate dissociation and ionisation rates, with uncertainties, in a standard ultraviolet interstellar radiation field (ISRF) and wavelength-dependent radiation fields. The new ISRF rates generally agree within 30% with our previous compilations, with a few notable exceptions. Read More

We present here the application of a model for a mass circulation mechanism in between the H-burning shell and the base of the convective envelope of low mass AGB stars, aimed at studying the isotopic composition of those presolar grains showing the most extreme levels of 18O depletion and high concentration of 26Mg from the decay of 26Al. The mixing scheme we present is based on a previously suggested magnetic-buoyancy process, already shown to account adequately for the formation of the main neutron source for slow neutron captures in AGB stars. We find that this scenario is also capable of reproducing for the first time the extreme values of the 17O/16O, the 18O/16O, and the 26Al/27Al isotopic ratios found in the mentioned oxide grains, including the highest amounts of 26Al there measured. Read More

This is a manual for the MOSiC package. MOSiC is a collection of IDL programs for profile analysis and Gaussian fitting of the Mg II h/k lines along with Gaussian fitting of the C II 133.5 nm line pair, the O I 135. Read More

We investigate how star formation efficiency can be significantly decreased by the removal of a molecular cloud's envelope by feedback from an external source. Feedback from star formation has difficulties halting the process in dense gas but can easily remove the less dense and warmer envelopes where star formation does not occur. However, the envelopes can play an important role keeping their host clouds bound by deepening the gravitational potential and providing a constraining pressure boundary. Read More

Observationally measuring the location of the H$_{2}$O snowline is crucial for understanding the planetesimal and planet formation processes, and the origin of water on Earth. In disks around Herbig Ae stars ($T_{\mathrm{*}}\sim$ 10,000K, $M_{\mathrm{*}}\gtrsim$ 2.5$M_{\bigodot}$), the position of the H$_{2}$O snowline is further from the central star compared with that around cooler, and less massive T Tauri stars. Read More

We report the first detection of the prebiotic complex organic molecule CH$_3$NCO in a solar-type protostar, IRAS16293-2422 B. This species is one of the most abundant complex organic molecule detected on the surface of the comet 67P/Churyumov-Gerasimenko, and in the insterstellar medium it has only been found in hot cores around high-mass protostars. We have used multi-frequency ALMA observations from 90 GHz to 350 GHz covering 11 unblended transitions of CH$_3$NCO and 40 more transitions that appear blended with emission from other molecular species. Read More

In a survey conducted between 2011-12 of interstellar Na I D line profiles in the direction of the Vela supernova remnant, a few lines of sight showed dramatic changes in low velocity absorption components with respect to profiles from 1993-1994 reported by Cha & Sembach. Three stars - HD 63578, HD 68217 and HD 76161 showed large decrease in strength over the 1993-2012 interval. HD 68217 and HD 76161 are associated with the Vela SNR whereas HD 63578 is associated with $\gamma^2$ Velorum wind bubble. Read More

Affiliations: 1METU, Ankara, Turkey, 2METU, Ankara, Turkey, 3METU, Ankara, Turkey, 4METU, Ankara, Turkey, 5Baskent University, Ankara, Turkey, 6METU, Ankara, Turkey

We represent noise strength analysis of Anomalous X-Ray Pulsars (AXPs) 4U 0142+61, 1RXS J170849.9-400910, 1E 1841-045, 1E 2259+586 and Soft Gamma Repeaters (SGRs) SGR J1833-0832, SWIFT J1822.3-1606 and SWIFT J1834. Read More

Modeling stellar atmospheres is a complex, intriguing task in modern astronomy. A systematic comparison of models with multi-technique observations is the only efficient way to constrain them. Aims: We performed a self-consistent modeling of the atmospheres of six C-rich AGB stars: R Lep, R Vol, Y Pav, AQ Sgr, U Hya and X TrA, with the aim of enlarging the knowledge of the dynamic processes occurring in their atmospheres. Read More

Affiliations: 1METU, Ankara, Turkey, 2METU, Ankara, Turkey, 3METU, Ankara, Turkey, 4Baskent University, Ankara, Turkey, 5METU, Ankara, Turkey

We analyse archival CGRO-BATSE X-ray flux and spin frequency measurements of GX 1+4 over a time span of 3000 days. We systematically search for time dependent variations of torque luminosity correlation. Our preliminary results indicate that the correlation shifts from being positive to negative on time scales of few 100 days. Read More

Affiliations: 1METU, Ankara, Turkey, 2METU, Ankara, Turkey, 3METU, Ankara, Turkey, 4Baskent University, Ankara, Turkey, 5METU, Ankara, Turkey

We present analysis of RXTE--PCA observations of GX 1+4 between March 3, 2001 and January 31, 2003. We also look for episodic correlations and anti-correlations between torque and X-ray luminosity using CGRO--BATSE X-ray flux and frequency derivative time series between 1991 and 1999. From the timing analysis of RXTE-PCA observations, we are able to phase connect pulse arrival times of the source within two different time intervals and obtain corresponding timing solutions. Read More

This review presents the latest advances in the nebular studies of post-AGB objects. Post-AGB stars are great tools to test nucleosynthesis and evolution models for stars of low and intermediate masses, and the evolution of dust in harsh environment. I will present the newly discovered class of post-RGB stars, formed via binary interaction on the RGB. Read More

Solar Energetic Particles (SEPs), a major component of space weather, propagate through the interplanetary medium strongly guided by the Interplanetary Magnetic Field (IMF). In this work, we analyse the implications a flat Heliospheric Current Sheet (HCS) has on proton propagation from SEP release sites to the Earth. We simulate proton propagation by integrating fully 3-D trajectories near an analytically defined flat current sheet, collecting comprehensive statistics into histograms, fluence maps and virtual observer time profiles within an energy range of 1--800 MeV. Read More

The characteristics of the gravitational collapse of a supernova and the fluxes of active and sterile neutrinos produced during the formation of its protoneutron core have been calculated numerically. The relative yields of active and sterile neutrinos in core matter with different degrees of neutronization have been calculated for various input parameters and various initial conditions. A significant increase in the fraction of sterile neutrinos produced in superdense core matter at the resonant degree of neutronization has been confirmed. Read More

In the BHR71 region, two low-mass protostars drive two distinguishable outflows. They constitute an ideal laboratory to investigate the effects of shock chemistry and the mechanisms that led to their formation. We aim to define the morphology of the warm gas component of the BHR 71 outflow and at modelling its shocked component. Read More

Recent observations from the Interface Region Imaging Spectrograph (IRIS) appear to show impulsive brightenings in high temperature lines, which when combined with simultaneous ground based observations in H$\alpha$, appear co-spatial to Ellerman Bombs (EBs). We use the RADYN 1-dimensional radiative transfer code in an attempt to try and reproduce the observed line profiles and simulate the atmospheric conditions of these events. Combined with the MULTI/RH line synthesis codes, we compute the H$\alpha$, Ca II 8542~\AA, and Mg II h \& k lines for these simulated events and compare them to previous observations. Read More

Power spectra of segmentation-cell length (a dominant length scale of EUV emission in the transition region) from full-disk HeII extreme ultraviolet (EUV) images observed by the Extreme ultraviolet Imaging Telescope (EIT) onboard the Solar and Heliospheric Observatory (SOHO) and the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO) during periods of quiet Sun conditions for a time interval from 1996 to 2015 were analyzed. The spatial power as a function of the spatial frequency from about 0.04 to 0. Read More