Quantitative Biology - Tissues and Organs Publications (50)

Search

Quantitative Biology - Tissues and Organs Publications

Aims. Clinical data indicating a heart rate (HR) target during rate control therapy for permanent atrial fibrillation (AF) and assessing its eventual relationship with reduced exercise tolerance are lacking. The present study aims at investigating the impact of resting HR on the hemodynamic response to exercise in permanent AF patients by means of a computational cardiovascular model. Read More


We introduce and study properties of phyllotactic and rhombic tilings on the cylin- der. These are discrete sets of points that generalize cylindrical lattices. Rhombic tilings appear as periodic orbits of a discrete dynamical system S that models plant pattern formation by stacking disks of equal radius on the cylinder. Read More


How can tissues generate large numbers of cells, yet keep the divisional load (the number of divisions along cell lineages) low in order to curtail the accumulation of somatic mutations and reduce the risk of cancer? To answer the question we consider a general model of hierarchically organized self-renewing tissues and show that the lifetime divisional load of such a tissue is independent of the details of the cell differentiation processes, and depends only on two structural and two dynamical parameters. Our results demonstrate that a strict analytical relationship exists between two seemingly disparate characteristics of self-renewing tissues: divisional load and tissue organization. Most remarkably, we find that a sufficient number of progressively slower dividing cell types can be almost as efficient in minimizing the divisional load, as non-renewing tissues. Read More


This paper addresses the problem of quantifying biomarkers in multi-stained tissues, based on color and spatial information. A deep learning based method that can automatically localize and quantify the cells expressing biomarker(s) in a whole slide image is proposed. The deep learning network is a fully convolutional network (FCN) whose input is the true RGB color image of a tissue and output is a map of the different biomarkers. Read More


Cerebral autoregulation refers to regulation mechanisms that aim to maintain cerebral blood flow approximately constant. It is often assessed by autoregulation index (ARI), which uses arterial blood pressure and cerebral blood flow velocity time series to produce a ten-scale index of autoregulation performance (0 denoting the absence of and 9 the strongest autoregulation). Unfortunately, data are rarely free from various artefacts. Read More


Cells in tissues can organize into a broad spectrum of structures according to their function. Drastic changes of organization, such as epithelial-mesenchymal transitions or the formation of spheroidal aggregates, are often associated either to tissue morphogenesis or to cancer progression. Here, we study the organization of cell colonies by means of simulations of self-propelled particles with generic cell-like interactions. Read More


The understanding of the macroscopic phenomenological models of the population growth at a microscopic level is important to predict the population behaviors emerged from the interactions between the individuals. In this work we consider the influence of the cell-cell interaction on the population growth rate $R$ in a tumor system, and show that, in most cases especially small proliferative probabilities, the regulative role of the interaction will be strengthened with the decline of the intrinsic proliferative probabilities. For the high replication rates of an individual and the cooperative interactions, the proliferative probability almost has no effect. Read More


The human body is a complex organism whose gross mechanical properties are enabled by an interconnected musculoskeletal network controlled by the nervous system. The nature of musculoskeletal interconnection facilitates stability, voluntary movement, and robustness to injury. However, a fundamental understanding of this network and its control by neural systems has remained elusive. Read More


Mounting evidence for the role of oxidative stress in the degeneration of articular cartilage after an injurious impact requires our modeling & simulation efforts to temporarily shift from just describing the effect of mechanical stress and inflammation on osteoarthritis (OA). The hypothesis that the injurious impact causes irreversible damage to chondrocyte mitochondria, which in turn increase their production of free radicals, affecting their energy production and their ability to rebuild the extracellular matrix, has to be modeled and the processes quantified in order to further the understanding of OA, its causes, and viable treatment options. The current article presents a calibrated model that captures the damage oxidative stress incurs on the cell viability, ATP production, and cartilage stability in a cartilage explant after a drop-tower impact. Read More


Mathematical models of cardiac electrical excitation are increasingly complex, with multiscale models seeking to represent and bridge physiological behaviours across temporal and spatial scales. The increasing complexity of these models makes it computationally expensive to both evaluate long term (>60 seconds) behaviour and determine sensitivity of model outputs to inputs. This is particularly relevant in models of atrial fibrillation (AF), where individual episodes last from seconds to days, and inter-episode waiting times can be minutes to months. Read More


Understanding active electrolocation in weakly electric fish remains a challenging issue. In this article we propose a mathematical formulation of this problem, in terms of partial differential equations. This allows us to detail two algorithms: one for localizing a target using the multi-frequency aspect of the signal, and antoher one for identifying the shape of this target. Read More


The pathogenesis and progression of many tumors, including hematologic malignancies is highly dependent on enhanced lipogenesis. De novo fatty-acid synthesis permits accelerated proliferation of tumor cells by providing structural components to build the membranes. It may also lead to alterations of physicochemical properties of the formed membranes, which can have an impact on signaling or even increase resistance to drugs in cancer cells. Read More


We propose an arterial network model based on 1D blood hemodynamic equations to study the behavior of different vascular surgical bypass grafts in case of an arterial occlusive pathology: an obliteration or stenosis of the iliac artery. We investigate the performances of three different bypass grafts (Aorto-Femoral, Axillo-Femoral and cross-over Femoral) depending on the degree of obliteration of the stenosis. Numerical simulations show that all bypass grafts are efficient since we retrieve in all cases the normal hemodynamics in the stenosed region while ensuring at the same time a global healthy circulation. Read More


Chitosan (CT) is an antibacterial polysaccharide that has been investigated for drug carriers, haemostats and wound dressings. For these applications, customised CT devices can often be obtained with specific experimental conditions, which can irreversibly alter native biopolymer properties and functions and lead to unreliable material behaviour. In order to investigate the structure-function relationships in CT covalent networks, monosodium 5-sulfoisophthalate (PhS) was selected as heparin-mimicking, growth factor-binding crosslinking segment, whilst 1,4-phenylenediacetic acid (4Ph) and poly(ethylene glycol) bis(carboxymethyl) ether (PEG) were employed as sulfonic acid-free diacids of low and high crosslinker length respectively. Read More


How do the topology and geometry of a tubular network affect the spread of particles within fluid flows? We investigate patterns of effective dispersion in the hierarchical, biological transport network formed by Physarum polycephalum. We demonstrate that a change in topology - pruning in the foraging state - causes a large increase in effective dispersion throughout the network. By comparison, changes in the hierarchy of tube radii result in smaller and more localized differences. Read More


This article reviews the mechanical bidomain model, a mathematical description how the extracellular matrix and intracellular cytoskeleton are coupled by integrin proteins. The fundamental hypothesis is that differences between intracellular and extracellular displacements drive mechanotransduction. A one-dimensional example illustrates the model, which is then extended to two dimensions. Read More


Growth pattern dynamics lie at the heart of morphogenesis. Here, we investigate the growth of plant leaves. We compute the conformal transformation that maps the contour of a leaf at a given stage onto the contour of the same leaf at a later stage. Read More


A continuum model for epithelial tissue mechanics is formulated from cell level mechanical ingredients and morphogenetic cell dynamics, including cell shape changes and cell rearrangements. The model is capable of dealing with finite deformation, and uses stress and deformation tensors that can be compared with experimental data. Using the model, we uncover the dynamical behaviour that underlies passive relaxation and active contraction-elongation of a tissue. Read More


Using a popular vertex-based model to describe a spatially disordered planar epithelial monolayer, we examine the relationship between cell shape and mechanical stress at the cell and tissue level. Deriving expressions for stress tensors starting from an energetic formulation of the model, we show that the principal axes of stress for an individual cell align with the principal axes of shape, and we determine the bulk effective tissue pressure when the monolayer is isotropic at the tissue level. Using simulations for a monolayer that is not under peripheral stress, we fit parameters of the model to experimental data for Xenopus embryonic tissue. Read More


The extent of renal scarring in chronic kidney disease (CKD) can only be ascertained by highly invasive, painful and sometimes risky tissue biopsy. Interestingly, CKD-related abnormalities in kidney size can often be visualized using ultrasound. Nevertheless, not only does the ellipsoid formula used today underestimate true renal size but also the relation governing renal size and collagen content remains unclear. Read More


Magnetic hyperthermia is a new type of cancer treatment designed for overcoming resistance to chemotherapy during the treatment of solid, inaccessible human tumors. The main challenge of this technology is increasing the local tumoral temperature with minimal side effects on the surrounding healthy tissue. This work consists of an in vitro study that compared the effect of hyperthermia in response to the application of exogenous heating (EHT) sources with the corresponding effect produced by magnetic hyperthermia (MHT) at the same target temperatures. Read More


We study the existence of weak solutions to a mixture model for tumour growth that consists of a Cahn--Hilliard--Darcy system coupled with an elliptic reaction-diffusion equation. The Darcy law gives rise to an elliptic equation for the pressure that is coupled to the convective Cahn--Hilliard equation through convective and source terms. Both Dirichlet and Robin boundary conditions are considered for the pressure variable, which allows for the source terms to be dependent on the solution variables. Read More


Physical therapy is the first line of treatment for adults with symptoms from degenerative spondylolisthesis. Surgical management is offered when nonoperative options have not adequately relieved symptoms. We performed PubMed literature search with the word 'spondylolisthesis', and updated till September 18, 2016. Read More


Purpose: To explore the usability and normal T1rho value of liver parenchyma with a novel single breathhold black blood single shot fast spin echo acquisition based liver imaging sequence. Materials and Methods: In total 19 health subjects (10 males, 9 females; mean age: 37.4 yrs; range: 23-54 yrs) participated in the study. Read More


Recent \emph{in vivo} experiments have illustrated the importance of understanding the hemodynamics of heart morphogenesis. In particular, ventricular trabeculation is governed by a delicate interaction between hemodynamic forces, myocardial activity, and morphogen gradients, all of which are coupled to genetic regulatory networks. The underlying hemodynamics at the stage of development in which the trabeculae form is particularly complex, given the balance between inertial and viscous forces. Read More


Developing successful scaffolds requires clinicians to adopt a multidisciplinary approach in order to understand and stimulate the natural bone regeneration process. A variety of natural and synthetic biomaterials, including naturally extracted, chemically functionalised collagen and synthetic Poly(epsilon-caprolactone) (PCL), can be manufactured into fibres, enabling the formation of nonwoven scaffolds. Many different nonwoven architectures and structural features can then be introduced, depending on the manufacturing parameters. Read More


The motor neuron disease amyotrophic lateral sclerosis (ALS) typically begins with localized muscle weakness. Progressive, widespread paralysis often follows over a few years. Does the disease begin with local changes in a small piece of neural tissue and then spread? Or does neural decay happen independently across diverse spatial locations? The distinction matters, because local initiation may arise by local changes in a tissue microenvironment, by somatic mutation, or by various epigenetic or regulatory fluctuations in a few cells. Read More


The two primary causal dimensions of age-related disease are rate and function. Change in rate of disease development shifts the age of onset. Change in physiological function provides necessary steps in disease progression. Read More


Purpose: Rupture of an intracranial aneurysm is the most common cause of subarachnoid haemorrhage (SAH), which is a life-threatening acute cerebrovascular event that typically affects working-age people. This study aims to investigate the aneurysmal SAH incidence rate in elderly population than in middle aged population in China. Materials and methods: Aneurysmal SAH cases were collected retrospectively from the archives of 21 hospitals in Mainland China. Read More


The epidemiology of lumbar degenerative spondylolisthesis (DS) remains controversial. We performed a systemic review with the aim to have a better understanding of DS's prevalence in general population. The results showed the prevalence of DS is very gender specific and age specific. Read More


The comprehension of tumor growth is a intriguing subject for scientists. New researches has been constantly required to better understand the complexity of this phenomenon. In this paper, we pursue a physical description that account for some experimental facts involving avascular tumor growth. Read More


The design of exudate-managing wound dressings is an established route to accelerated healing, although such design remains a challenge from material and manufacturing standpoints. Aiming towards the clinical translation of knowledge gained in vitro with highly swollen rat tail collagen hydrogels, this study investigated the healing capability in a diabetic mouse wound model of telopeptide-free, protease-inhibiting collagen networks. 4 vinylbenzylation and UV irradiation of type I atelocollagen (AC) led to hydrogel networks with chemical and macroscopic properties comparable to previous collagen analogues, attributable to similar lysine content and dichroic properties. Read More


Collective cell migration contributes to morphogenesis, wound healing or tumor metastasis. Culturing epithelial monolayers on a substrate is an in vitro configuration suitable to quantitatively characterize such tissue migration by measuring cell velocity, density and cell-substrate interaction force. Inhibiting cell division, we limit cell density increase and favor steady cell migration, while by using long narrow strips we stabilise the migrating front shape, so that we observe migration over a day or more. Read More


Inhomogeneity and anisotropy play a crucial role in attributing articular cartilage its properties. The frictionless contact model constructed here consists in two thin biphasic transversely isotropic transversely homogeneous (TITH) cartilage layers firmly attached onto rigid substrates and shaped as elliptic paraboloids of different radii. Using asymptotic techniques, a solution to the deformation problem of such material has been recently obtained extending previous ones referred to homogeneous materials. Read More


Nonlinear waves of the reaction-diffusion (RD) type occur in many biophysical systems, including the heart, where they initiate cardiac contraction. Such waves can form vortices called scroll waves, which result in the onset of life-threatening cardiac arrhythmias. The dynamics of scroll waves is affected by the presence of inhomogeneities, which, in a very general way, can be of \textit{(i)} ionic type, i. Read More


Muscular dystrophy (MD) describes generalized progressive muscular weakness due to the wasting of muscle fibers. The progression of the disease is affected by known immunological and mechanical factors, and possibly other unknown mechanisms. These dynamics have begun to be elucidated in the last two decades. Read More


Around the third week after gestation in embryonic development, the human heart consists only of a valvless tube, unlike a fully developed adult heart, which is multi-chambered. At this stage in development, the heart valves have not formed and so net flow of blood through the heart must be driven by a different mechanism. It is hypothesized that there are two possible mechanisms that drive blood flow at this stage - Liebau pumping (dynamic suction pumping or valveless pumping) and peristaltic pumping. Read More


Rapidly dividing tissues, like intestinal crypts, are frequently chosen to investigate the process of tumor initiation, because of their high rate of mutations. To study the interplay between normal and mutant as well as immortal cells in the human colon or intestinal crypt, we developed a 4-compartmental stochastic model for cell dynamics based on current discoveries. Recent studies of the intestinal crypt have revealed the existence of two stem cell groups. Read More


A central question in developmental biology is how size and position are determined. The genetic code carries instructions on how to control these properties in order to regulate the pattern and morphology of structures in the developing organism. Transcription and protein translation mechanisms implement these instructions. Read More


Biomaterials are becoming an essential tool in the study and application of stem cell research. Various types of biomaterials enable three-dimensional (3D) culture of stem cells, and, more recently, also enable high-resolution patterning and organization of multicellular architectures. Biomaterials also hold potential to provide many additional advantages over cell transplants alone in regenerative medicine. Read More


Cyanobacteria forming one-dimensional filaments are paradigmatic model organisms of the transition between unicellular and multicellular living forms. Under nitrogen limiting conditions, in filaments of the genus Anabaena, some cells differentiate into heterocysts, which lose the possibility to divide but are able to fix environmental nitrogen for the colony. These heterocysts form a quasi-regular pattern in the filament, representing a prototype of patterning and morphogenesis in prokaryotes. Read More


The aim of the current study was to investigate the morphological structure of one of the most common reptilian species in Egypt, Varanus niloticus or Nile monitor. Specimens for histological examination were collected from the esophageus, stomach and small intestine of the Nile monitor and processed for paraffin embedding. Sections were stained with haematoxylin and eosin for general morphology. Read More


2016Oct
Affiliations: 1Department of Histology, Faculty of Veterinary Medicine, South Valley University, 83523 Qena, Egypt, 2Department of Histology, Faculty of Veterinary Medicine, South Valley University, 83523 Qena, Egypt, 3Department of Anatomy and Embryology, Faculty of Veterinary Medicine, South Valley University, 83523 Qena, Egypt

Background The morphological and biochemical impact of a short-period of starvation on Japanese quail was investigated. Materials and methods Ten adult male Japanese quail were divided into two groups; control fed and starved. The control-fed group was offered food and water ad libitum and the starved group was subjected to a short-period of food deprivation. Read More


We develop an agent-based model of vasculogenesis, the de novo formation of blood vessels. Endothelial cells in the vessel network are viewed as linearly elastic spheres and are of two types: vessel elements are contained within the network; tip cells are located at endpoints. Tip cells move in response to forces due to interactions with neighbouring vessel elements, the local tissue environment, chemotaxis and a persistence force modeling their tendency to continue moving in the same direction. Read More


From the basic impact of nutrient intake on health maintenance to the psychosocial benefits of mealtime, great advancements in nutritional sciences for support of human space travel have occurred over the past 60 years. Nutrition in space has many areas of impact, including provision of required nutrients and maintenance of endocrine, immune, and musculoskeletal systems. It is affected by environmental conditions such as radiation, temperature, and atmospheric pressures, and these are reviewed. Read More


During the last decades, medical observations and multiscale data concerning tumor growth are mounting. At the same time, contemporary imaging techniques well established in clinical practice, provide a variety of information on real-time, in-vivo tumor growth. Mathematical and in-silico modeling has been widely recruited to provide means for further understanding of pertinent biological phenomena. Read More


It has recently been observed that the occurrence of sudden cardiac death has a close statistical relationship with the time of day, viz., ventricular fibrillation is most likely to occur between 12 am-6 am, with 6 pm-12 am being the next most likely period. Consequently there has been significant interest in understanding how cardiac activity is influenced by the circadian clock, i. Read More


The upper motor neuron dysfunction in amyotrophic lateral sclerosis was quantified using triple stimulation and more focal transcranial magnetic stimulation techniques that were developed to reduce recording variability. These measurements were combined with clinical and neurophysiological data to develop a novel random forest based supervised machine learning prediction model. This model was capable of predicting cross-sectional ALS disease severity as measured by the ALSFRSr scale with 97% overall accuracy and 99% precision. Read More


Microvessels -blood vessels with diameter less than 200 microns- form large, intricate networks organized into arterioles, capillaries and venules. In these networks, the distribution of flow and pressure drop is a highly interlaced function of single vessel resistances and mutual vessel interactions. In this paper we propose a mathematical and computational model to study the behavior of microcirculatory networks subjected to different conditions. Read More