Physics - Plasma Physics Publications (50)

Search

Physics - Plasma Physics Publications

Very strong magnetic fields can arise in non-central heavy-ion collisions at ultrarelativistic energies, which may not decay quickly in a conducting plasma. We carry out relativistic magnetohydrodynamics (RMHD) simulations to study the effects of this magnetic field on the evolution of the plasma and on resulting flow fluctuations in the ideal RMHD limit. Our results show that magnetic field leads to enhancement in elliptic flow, though in general effects of magnetic field on elliptic flow are very complex. Read More


2017Mar
Affiliations: 1Max-Planck-Institut für Plasmaphysik, 2Department of Physics, Chalmers University of Technology, 3Max-Planck-Institut für Plasmaphysik, 4Max-Planck-Institut für Plasmaphysik

A potential threat to the performance of magnetically confined fusion plasmas is the problem of impurity accumulation, which causes the concentration of highly charged impurity ions to rise uncontrollably in the center of the plasma and spoil the energy confinement by excessive radiation. It has long been thought that the collisional transport of impurities in stellarators always leads to such accumulation (if the electric field points inwards, which is usually the case), whereas tokamaks, being axisymmetric, can benefit from "temperature screening", i.e. Read More


Ultracold plasmas (UCP) provide a well-controlled system for studying multiple aspects in plasma physics that include collisions and strong coupling effects. By applying a short electric field pulse to a UCP, a plasma electron center-of-mass (CM) oscillation can be initiated. In accessible parameter ranges, the damping rate of this oscillation is determined by the electron-ion collision rate. Read More


A highly elongated plasma is desirable in order to increase plasma pressure and energy confinement to maximize fusion power output. However, there is a limit to the maximum achievable elongation which is set by vertical instabilities driven by the $n=0$ MHD mode. This limit can be increased by optimizing several parameters characterizing the plasma and the wall. Read More


The energy of plasma waves can be moved up and down the spectrum using chirped modulations of plasma parameters, which can be driven by external fields. Depending on whether the wave spectrum is discrete (bounded plasma) or continuous (boundless plasma), this phenomenon is called ladder climbing (LC) or autoresonant acceleration of plasmons. It was first proposed by Barth \textit{et al. Read More


Within the problem of the finding of the mean potential energy of the charged particle in the plasma in this work a classification of physical systems (electrolytes, dusty plasmas, plasmas) is made based on consideration, or lack thereof, of a few special additional conditions. The system considered here, as well as other systems which are described with those additional conditions imposed are treated as the systems of the "closed" type, while the systems where those conditions are fully neglected - as being of the "open" type. In the our previous investigation one- and two component systems were examined. Read More


In fusion plasmas the strong magnetic field allows the fast gyro-motion to be systematically removed from the description of the dynamics, resulting in a considerable model simplification and gain of computational time. Nowadays, the gyrokinetic (GK) codes play a major role in the understanding of the development and the saturation of turbulence and in the prediction of the subsequent transport. Naturally, these codes require thorough verification and validation. Read More


Gas-puff imaging techniques are employed to determine the far SOL region radial electric field and the plasma potential in ICRF heated discharges in the Alcator C-Mod tokamak. The 2-dimensional velocity fields of the turbulent structures, which are advected by RF-induced $ \mathbf{E\times B} $ flows, are obtained via the time-delay estimation (TDE) techniques. Both the magnitude and radial extension of the radial electric field $ E_r $ are observed to increase with the toroidal magnetic field strength $ B_\varphi $ and the ICRF power. Read More


We investigate the nature of dissipative instability appearing in a prominence planar thread filled with partially ionised plasma in the incompressible limit. The importance of partial ionisation is investigated in terms of the ionisation factor and wavelength of waves propagating in the slab. To highlight the role of partial ionisation, we have constructed models describing various situations we can meet in solar prominence fine structure. Read More


According to magnetohydrodynamics (MHD), the encounter of two collisional magnetized plasmas at high velocity gives rise to shock waves. Investigations conducted so far have found that the same conclusion still holds in the case of collisionless plasmas. For the case of a flow-aligned field, MHD stipulates that the field and the fluid are disconnected, so that the shock produced is independent of the field. Read More


The Community Coordinated Modeling Center (CCMC) at NASA Goddard Space Flight Center is a multi-agency partnership to enable, support and perform research and development for next-generation space science and space weather models. CCMC currently hosts nearly 100 numerical models and a cornerstone of this activity is the Runs on Request (RoR) system which allows anyone to request a model run and analyze/visualize the results via a web browser. CCMC is also active in the education community by organizing student research contests, heliophysics summer schools, and space weather forecaster training for students, government and industry representatives. Read More


We propose a laser-controlled plasma shutter technique to generate sharp laser pulses using a process analogous to electromagnetically-induced transparency in atoms. The shutter is controlled by a laser with moderately strong intensity, which induces a transparency window below the cutoff frequency, and hence enables propagation of a low frequency laser pulse. Numerical simulations demonstrate it is possible to generate a sharp pulse wavefront (sub-ps) using two broad pulses in high density plasma. Read More


Variational principles for magnetohydrodynamics (MHD) were introduced by previous authors both in Lagrangian and Eulerian form. In this paper we introduce simpler Eulerian variational principles from which all the relevant equations of non-barotropic MHD can be derived for certain field topologies. The variational principle is given in terms of five independent functions for non-stationary non-barotropic flows. Read More


The laser-plasma accelerator has attracted great interest for constituting an alternative in the production of the relativistic electron beams of high peak current. But the generated electron beam has poor monochrome and emittance, which make it difficult to produce high brightness radiation. Here we propose a compact flexible laser undulator based on ponderomotive force to constitute a millimeter-sized synchrotron radiation source of X-ray. Read More


An analytical discontinuity is reported in what was thought to be the discontinuity-free exact nonparaxial vortex beam phasor obtained within the complex source/sink model. This discontinuity appears for all odd values of the orbital angular momentum mode. Such discontinuities in the phasor lead to nonphysical discontinuities in the real electromagnetic field components. Read More


The status of the literature is reviewed for several thermophysical properties of pure solid and liquid tungsten that constitute important input for the modelling of intense plasma-surface interaction phenomena that are important for fusion applications. Reliable experimental data are analyzed for the latent heat of fusion, the electrical resistivity, the specific isobaric heat capacity, the thermal conductivity and the mass density from the room temperature up to the boiling point of tungsten as well as for the surface tension and the dynamic viscosity across the liquid state. Analytical expressions of high accuracy are recommended for these thermophysical properties that involved a minimum degree of extrapolations. Read More


A brief analysis of the proton parallel and oblique firehose instability is presented from a fluid perspective and the results are compared to kinetic theory solutions obtained by the WHAMP code. It is shown that the classical CGL model very accurately describes the growth rate of these instabilities at sufficiently long spatial scales (small wavenumbers). The required stabilization of these instabilities at small spatial scales (high wavenumbers) naturally requires dispersive effects and the stabilization is due to the Hall term and finite Larmor radius (FLR) corrections to the pressure tensor. Read More


The effect of magnetic turbulence in shaping the current density in axisymmetric magnetized plasma is analyzed using a turbulent extension of Ohm's law derived from the self-consistent action-angle transport theory. Besides the well-known hyper-resistive (helicity-conserving) contribution, the generalized Ohm's law contains an anomalous resistivity term, and a turbulent bootstrap-like term proportional to the current density derivative. The numerical solution of the equation for equilibrium and turbulence profiles characteristic of conventional and advanced scenarios shows that, trough "turbulent bootstrap" effect and anomalous resistivity turbulence can generate power and parallel current which are a sizable portion (about 20-25%) of the corresponding effects associated with the neoclassical bootstrap effect. Read More


A long-term energy option that is just approaching the horizon after decades of struggle, is fusion. Recent developments allow us to apply techniques from spin physics to advance its viability. The cross section for the primary fusion fuel in a tokamak reactor, D+T=>alpha+n, would be increased by a factor of 1. Read More


Neoclassical transport in the presence of non-axisymmetric magnetic fields causes a toroidal torque known as neoclassical toroidal viscosity (NTV). The toroidal symmetry of ITER will be broken by the finite number of toroidal field coils and by test blanket modules (TBMs). The addition of ferritic inserts (FIs) will decrease the magnitude of the toroidal field ripple. Read More


The relationship between a decaying strong turbulence and the mirror instability in a slowly expanding plasma is investigated using two-dimensional hybrid expanding box simulations. We impose an initial ambient magnetic field perpendicular to the simulation box, and we start with a spectrum of large-scale, linearly-polarized, random-phase Alfvenic fluctuations which have energy equipartition between kinetic and magnetic fluctuations and vanishing correlation between the two fields. A turbulent cascade rapidly develops, magnetic field fluctuations exhibit a Kolmogorov-like power-law spectrum at large scales and a steeper spectrum at sub-ion scales. Read More


Self-organized striated structures of the plasma emission have recently been observed in capacitive radio-frequency CF4 plasmas by Phase Resolved Optical Emission Spectroscopy (PROES) and their formation was analyzed and understood by Particle in Cell / Monte Carlo Collision (PIC/MCC) simulations [Y.-X. Liu, et al. Read More


An example of the non-equilibrium phase transition is the formation of lanes when one kind of particles is driven against the other. According to experimental observation, lane formation in binary complex plasmas occurs when the smaller particles are driven through the stationary dust cloud of the larger particles. We calculate the driving force acting on a probe particle that finds itself in a quiescent cloud of particles in complex plasma of the low-pressure radio frequency discharge under microgravity conditions. Read More


We present an overview of the performance of the Neutralized Drift Compression Experiment-II (NDCX-II) accelerator at Berkeley Lab, and report on recent target experiments on beam driven melting and transmission ion energy loss measurements with nanosecond and millimeter-scale ion beam pulses and thin tin foils. Bunches with around 10^11 ions, 1-mm radius, and 2-30 ns FWHM duration have been created with corresponding fluences in the range of 0.1 to 0. Read More


An intense, short laser pulse incident on a transparent dielectric can excite electrons from valence to the conduction band. As these electrons undergo scattering, both from phonons and ions, they emit bremsstrahlung radiation. Here we present a theory of bremsstrahlung emission appropriate for laser pulse-dielectric interactions. Read More


2017Mar

We provide a synthesis model demonstrating the "fast dynamo" action of the Sun. The latter is essentially accomplished via two toroidal structures presumably formed in the tachocline and placed symmetrically with respect to the equatorial plane. The two tori are characterized by several prominent key-properties as follows: First, in each "Torus" a surplus of negative charge is entrapped for approximately the 11-year sunspot cycle. Read More


The motion of a charged particle in a nonuniform straight magnetic field with a uniform magnetic-field gradient is solved exactly in terms of elliptic functions. The connection between this problem and the guiding-center approximation is discussed. It is shown that, for this problem, the predictions of guiding-center theory agree very well with the orbit-averaged particle motion and hold well beyond the standard guiding-center limit $\epsilon \equiv \rho/L \ll 1$, where $\rho$ is the gyromotion length scale and $L$ is the magnetic-field gradient length scale. Read More


The propagation of microwaves across a turbulent plasma density layer is investigated with full-wave simulations. To properly represent a fusion edge-plasma, drift-wave turbulence is considered based on the Hasegawa-Wakatani model. Scattering and broadening of a microwave beam whose amplitude distribution is of Gaussian shape is studied in detail as a function of certain turbulence properties. Read More


Direct studies of intense laser-solid interactions is still of great challenges, because of the many coupled physical mechanisms, such as direct laser heating, ionization dynamics, collision among charged particles, and electrostatic or electromagnetic instabilities, to name just a few. Here, we present a full particle-in-cell simulation (PIC) framework, which enables us to calculate laser-solid interactions in a "first principle" way, covering almost "all" the coupled physical mechanisms. Apart from the mechanisms above, the numerical self-heating of PIC simulations, which usually appears in solid-density plasmas, is also well controlled by the proposed "layered-density" method. Read More


The reduced-particle model is the central element for the systematic derivation of the gyrokinetic Vlasov-Maxwell equations from first principles. Coupled to the fields inside the gyrokinetic field-particle Lagrangian, the reduced-particle model defines polarization and magnetization effects appearing in the gyrokinetic Maxwell equations. It is also used for the reconstruction of the gyrokinetic Vlasov equation from the particle characteristics. Read More


We have carried out a detailed study of scaling region using detrended fractal analysis test by applying different forcing likewise noise, sinusoidal, square on the floating potential fluctuations acquired under different pressures in a DC glow discharge plasma. The transition in the dynamics is observed through recurrence plot techniques which is an efficient method to observe the critical regime transitions in dynamics. The complexity of the nonlinear fluctuation has been revealed with the help of recurrence quantification analysis which is a suitable tool for investigating recurrence, an ubiquitous feature providing a deep insight into the dynamics of real dynamical system. Read More


2017Mar
Affiliations: 1University of Colorado Boulder and Institute for Advanced Study, Princeton, NJ

Many relativistic plasma environments in high-energy astrophysics, including pulsar wind nebulae, hot accretion flows onto black holes, relativistic jets in active galactic nuclei and gamma-ray bursts, and giant radio lobes, are naturally turbulent. The plasma in these environments is often so hot that synchrotron and inverse-Compton (IC) radiative cooling becomes important. In this paper we investigate the general thermodynamic and radiative properties (and hence the observational appearance) of an optically thin relativistically hot plasma stirred by driven magnetohydrodynamic (MHD) turbulence and cooled by radiation. Read More


An experimental investigation on the periodic and chaotic oscillations in a reflex plasma source in presence of magnetic field is presented. The experiment is conducted in a reflex plasma source, consisting of two cathodes and a ring anode. A penning type DC glow discharge in an uniform axial magnetic field is initiated in the background of argon gas. Read More


The new numerical version of the Wigner approach to quantum mechanics for treatment thermodynamic properties of strongly coupled systems of particles has been developed for extreme conditions, when analytical approximations obtained in different kind of perturbation theories can not be applied. Explicit analytical expression of the Wigner function has been obtained in linear and harmonic approximations. Fermi statistical effects are accounted by effective pair pseudopotential depending on coordinates, momenta and degeneracy parameter of particles and taking into account Pauli blocking of fermions. Read More


Test particle Monte-Carlo models for neutral particles are often used in the tokamak edge modelling codes. The drawback of this approach is that the self-consistent solution suffers from random error introduced by the statistical method. A particular case where the onset of nonphysical solutions can be clearly identified is violation of the global particle balance due to non-converged residuals. Read More


Based on a stochastic model for intermittent fluctuations in the boundary region of magnetically confined plasmas, an expression for the level crossing rate is derived from the joint distribution of the process and its derivative. From this the average time spent by the process above a certain threshold level is obtained, and limits of both high and low intermittency are investigated and compared to previously known results. In the case of a highly intermittent process, the distribution of time spent above threshold is obtained. Read More


In magnetohydrodynamic (MHD) turbulence, the large-scale magnetic field sets a preferred local direction for the small-scale dynamics, altering the statistics of turbulence from the isotropic case. This happens even in the absence of a total magnetic flux, since MHD turbulence forms randomly oriented large-scale domains of strong magnetic field. It is therefore customary to study small-scale magnetic plasma turbulence by assuming a strong background magnetic field relative to the turbulent fluctuations. Read More


The transport of heat out of tokamak plasmas by turbulence is the dominant mechanism limiting the performance of fusion reactors. Turbulence can be driven by the ion temperature gradient (ITG) and suppressed by toroidal sheared flows. Numerical simulations attempting to understand turbulence are crucial for guiding the design of future reactors. Read More


Breaking the up-down symmetry of the tokamak poloidal cross-section can significantly increase the spontaneous rotation due to turbulent momentum transport. In this work, we optimize the shape of flux surfaces with both tilted elongation and tilted triangularity in order to maximize this drive of intrinsic rotation. Nonlinear gyrokinetic simulations demonstrate that adding optimally-tilted triangularity can double the momentum transport of a tilted elliptical shape. Read More


We demonstrate that the scaling properties of slab ion and electron temperature gradient driven turbulence may be derived by dimensional analysis of a drift kinetic system with one kinetic species. These properties have previously been observed in gyrokinetic simulations of turbulence in magnetic fusion devices. Read More


In the complex 3D magnetic fields of stellarators, ion-temperature-gradient turbulence is shown to have two distinct saturation regimes, as revealed by petascale numerical simulations, and explained by a simple turbulence theory. The first regime is marked by strong zonal flows, and matches previous observations in tokamaks. The newly observed second regime, in contrast, exhibits small- scale quasi-two-dimensional turbulence, negligible zonal flows, and, surprisingly, a weaker heat flux scaling. Read More


Power exhaust is one of the major challenges for a future fusion device. Applying a non-axisymmetric external magnetic perturbation is one technique that is studied in order to mitigate or suppress large edge localized modes which accompany the high confinement regime in tokamaks. The external magnetic perturbation brakes the axisymmetry of a tokamak and leads to a 2D heat flux pattern on the divertor target. Read More


Observations in the solar wind suggest that the compressive component of inertial-range solar-wind turbulence is dominated by slow modes. The low collisionality of the solar wind allows for non-thermal features to survive, which suggests the requirement of a kinetic plasma description. The least-damped kinetic slow mode is associated with the ion-acoustic (IA) wave and a non-propagating (NP) mode. Read More


Understanding the multi-scale neoclassical and turbulence physics in the edge region (pedestal + scrape-off layer) is required in order to reliably predict performance in future fusion devices. We explore turbulent characteristics in the edge region from a multiscale neoclassical and turbulent XGC1 gyrokinetic simulation in a DIII-D like tokamak geometry, here excluding neutrals and collisions. For an H-mode type plasma with steep pedestal, it is found that the electron density fluctuations increase towards the separatrix, and stay high well into the SOL, reaching a maximum value of $\delta n_e / \bar{n}_e \sim 0. Read More


Kinetic-range turbulence in magnetized plasmas and, in particular, in the context of solar-wind turbulence has been extensively investigated over the past decades via numerical simulations. Among others, one of the widely adopted reduced plasma model is the so-called hybrid-kinetic model, where the ions are fully kinetic and the electrons are treated as a neutralizing (inertial or massless) fluid. Within the same model, different numerical methods and/or approaches to turbulence development have been employed. Read More


The energy released in solar flares derives from a reconfiguration of magnetic fields to a lower energy state, and is manifested in several forms, including bulk kinetic energy of the coronal mass ejection, acceleration of electrons and ions, and enhanced thermal energy that is ultimately radiated away across the electromagnetic spectrum from optical to X-rays. Using an unprecedented set of coordinated observations, from a suite of instruments, we here report on a hitherto largely overlooked energy component -- the kinetic energy associated with small-scale turbulent mass motions. We show that the spatial location of, and timing of the peak in, turbulent kinetic energy together provide persuasive evidence that turbulent energy may play a key role in the transfer of energy in solar flares. Read More


We unite the one-flow-dominated-state (OFDS) argument of \citet{MeyrandGaltierPRL12} with the one-chiral-sector-dominated-state \citep[OCSDS:][]{hydrochirality} one to form a nonlinear extended-magnetohydrodynamics (XMHD) theory for the solar wind turbulence (SWT), both in the Hall MHD regime and in the electron inertial MHD regime \citep[modifying the theory of][]{AbdelhamidLingamMahajanAPJ16}. `Degenerate states' in \citet{MiloshevichLingamMorrisonNJP17}'s XMHD absolute equilibria are exposed by helical mode decomposition technique, and the `chiroids absolute equilibria' offer the statistical dynamics basis to replace the linear wave (of infinitesimal or arbitrarily finite amplitudes) arguments of previous theories with OCSDS, suggested here to unite OFDS with careful analyses for the physics of (generalized) helicity and chirality in SWT. Read More


The boundary problem about behavior (oscillations) of the electronic plasmas with arbitrary degree of degeneration of electronic gas in half-space with specular boundary conditions is analytically solved. The kinetic equation of Vlasov--Boltzmann with integral of collisions of type BGK (Bhatnagar, Gross, Krook) and Maxwell equation for electric field are applied. Distribution function for electrons and electric field in plasma in the form of expansion under eigen solutions of the initial system of equations are received. Read More