Physics - Instrumentation and Detectors Publications (50)


Physics - Instrumentation and Detectors Publications

We are experimentally investigating possible violations of standard quantum mechanics predictions in the Gran Sasso underground laboratory in Italy. We test with high precision the Pauli Exclusion Principle and the collapse of the wave function (collapse models). We present our method of searching for possible small violations of the Pauli Exclusion Principle (PEP) for electrons, through the search for anomalous X-ray transitions in copper atoms, produced by fresh electrons (brought inside the copper bar by circulating current) which can have the probability to undergo Pauli-forbidden transition to the 1 s level already occupied by two electrons and we describe the VIP2 (VIolation of PEP) experiment under data taking at the Gran Sasso underground laboratories. Read More

LumiCal is a sampling electromagnetic calorimeter designed for the precise measurement of integrated luminosity in electron positron linear collider experiments. The present report contains a description and results of the first beam test of a multilayer LimiCal prototype with four silicon detector planes. A 5 GeV electron beam from the CERN PS T9 facility was used to study the performance of the LumiCal prototype. Read More

The limitations in performance of the present RICH system in the LHCb experiment are given by the natural chromatic dispersion of the gaseous Cherenkov radiator, the aberrations of the optical system and the pixel size of the photon detectors. Moreover, the overall PID performance can be affected by high detector occupancy as the pattern recognition becomes more difficult with high particle multiplicities. This paper shows a way to improve performance by systematically addressing each of the previously mentioned limitations. Read More

The first optically resolved electron tracks from an $^{55}$Fe X-ray source are presented together with the resulting energy spectrum. These tracks were produced in a TPC operating in low pressure carbon tetrafluoride (CF$_4$) gas, and imaged using a fast lens and low noise CCD optical system. Using GEM/THGEM amplification devices, effective gas gains of $\gtrsim 2 \times 10^5$ were obtained in pure CF$_4$ at low pressures in the 25-100 Torr range. Read More

The advent of microcontrollers with enough CPU power and with analog and digital peripherals makes possible to design a complete particle detector with relative acquisition system around one microcontroller chip. The existence of a world wide data infrastructure as internet allows for devising a distributed network of cheap detectors capable to elaborate and send data or respond to settings commands. The internet infrastructure enables to distribute the absolute time (with precision of few milliseconds), to the simple devices far apart, with few milliseconds precision, from a few meters to thousands of kilometres. Read More

The bubble nucleation in superheated liquid can be controlled by adjusting the ambient pressure and temperature. At higher pressure the threshold energy for bubble nucleation increases and we have observed that the amplitude of the acoustic emission during vaporisation of superheated droplet decreases with increase in pressure at any given temperature. Other acoustic parameters such as the primary harmonic frequency and the decay time constant of the acoustic signal also decrease with increase in pressure. Read More

Authors: B. J. Mount, S. Hans, R. Rosero, M. Yeh, C. Chan, R. J. Gaitskell, D. Q. Huang, J. Makkinje, D. C. Malling, M. Pangilinan, C. A. Rhyne, W. C. Taylor, J. R. Verbus, Y. D. Kim, H. S. Lee, J. Lee, D. S. Leonard, J. Li, J. Belle, A. Cottle, W. H. Lippincott, D. J. Markley, T. J. Martin, M. Sarychev, T. E. Tope, M. Utes, R. Wang, I. Young, H. M. Araújo, A. J. Bailey, D. Bauer, D. Colling, A. Currie, S. Fayer, F. Froborg, S. Greenwood, W. G. Jones, V. Kasey, M. Khaleeq, I. Olcina, B. López Paredes, A. Richards, T. J. Sumner, A. Tomás, A. Vacheret, P. Brás, A. Lindote, M. I. Lopes, F. Neves, J. P. Rodrigues, C. Silva, V. N. Solovov, M. J. Barry, A. Cole, A. Dobi, W. R. Edwards, C. H. Faham, S. Fiorucci, N. J. Gantos, V. M. Gehman, M. G. D. Gilchriese, K. Hanzel, M. D. Hoff, K. Kamdin, K. T. Lesko, C. T. McConnell, K. O'Sullivan, K. C. Oliver-Mallory, S. J. Patton, J. S. Saba, P. Sorensen, K. J. Thomas, C. E. Tull, W. L. Waldron, M. S. Witherell, A. Bernstein, K. Kazkaz, J. Xu, D. Yu. Akimov, A. I. Bolozdynya, A. V. Khromov, A. M. Konovalov, A. V. Kumpan, V. V. Sosnovtsev, C. E. Dahl, D. Temples, M. C. Carmona-Benitez, L. de Viveiros, D. S. Akerib, H. Auyeung, T. P. Biesiadzinski, M. Breidenbach, R. Bramante, R. Conley, W. W. Craddock, A. Fan, A. Hau, C. M. Ignarra, W. Ji, H. J. Krebs, R. Linehan, C. Lee, S. Luitz, E. Mizrachi, M. E. Monzani, F. G. O'Neill, S. Pierson, M. Racine, B. N. Ratcliff, G. W. Shutt, T. A. Shutt, K. Skarpaas, K. Stifter, W. H. To, J. Va'vra, T. J. Whitis, W. J. Wisniewski, X. Bai, R. Bunker, R. Coughlen, C. Hjemfelt, R. Leonard, E. H. Miller, E. Morrison, J. Reichenbacher, R. W. Schnee, M. R. Stark, K. Sundarnath, D. R. Tiedt, M. Timalsina, P. Bauer, B. Carlson, M. Horn, M. Johnson, J. Keefner, C. Maupin, D. J. Taylor, S. Balashov, P. Ford, V. Francis, E. Holtom, A. Khazov, A. Kaboth, P. Majewski, J. A. Nikkel, J. O'Dell, R. M. Preece, M. G. D. van der Grinten, S. D. Worm, R. L. Mannino, T. M. Stiegler, P. A. Terman, R. C. Webb, C. Levy, J. Mock, M. Szydagis, J. K. Busenitz, M. Elnimr, J. Y-K. Hor, Y. Meng, A. Piepke, I. Stancu, L. Kreczko, B. Krikler, B. Penning, E. P. Bernard, R. G. Jacobsen, D. N. McKinsey, R. Watson, J. E. Cutter, S. El-Jurf, R. M. Gerhard, D. Hemer, S. Hillbrand, B. Holbrook, B. G. Lenardo, A. G. Manalaysay, J. A. Morad, S. Stephenson, J. A. Thomson, M. Tripathi, S. Uvarov, S. J. Haselschwardt, S. Kyre, C. Nehrkorn, H. N. Nelson, M. Solmaz, D. T. White, M. Cascella, J. E. Y. Dobson, C. Ghag, X. Liu, L. Manenti, L. Reichhart, S. Shaw, U. Utku, P. Beltrame, T. J. R. Davison, M. F. Marzioni, A. St. J. Murphy, A. Nilima, B. Boxer, S. Burdin, A. Greenall, S. Powell, H. J. Rose, P. Sutcliffe, J. Balajthy, T. K. Edberg, C. R. Hall, J. S. Silk, S. Hertel, C. W. Akerlof, M. Arthurs, W. Lorenzon, K. Pushkin, M. Schubnell, K. E. Boast, C. Carels, T. Fruth, H. Kraus, F. -T. Liao, J. Lin, P. R. Scovell, E. Druszkiewicz, D. Khaitan, M. Koyuncu, W. Skulski, F. L. H. Wolfs, J. Yin, E. V. Korolkova, V. A. Kudryavtsev, P. Rossiter, D. Woodward, A. A. Chiller, C. Chiller, D. -M. Mei, L. Wang, W. -Z. Wei, M. While, C. Zhang, S. K. Alsum, T. Benson, D. L. Carlsmith, J. J. Cherwinka, S. Dasu, G. Gregerson, B. Gomber, A. Pagac, K. J. Palladino, C. O. Vuosalo, Q. Xiao, J. H. Buckley, V. V. Bugaev, M. A. Olevitch, E. M. Boulton, W. T. Emmet, T. W. Hurteau, N. A. Larsen, E. K. Pease, B. P. Tennyson, L. Tvrznikova

In this Technical Design Report (TDR) we describe the LZ detector to be built at the Sanford Underground Research Facility (SURF). The LZ dark matter experiment is designed to achieve sensitivity to a WIMP-nucleon spin-independent cross section of three times ten to the negative forty-eighth square centimeters. Read More

In this paper, we describe measurements of the response functions of a fiber-based dual- readout calorimeter for pions, protons and multiparticle "jets" with energies in the range from 10 to 180 GeV. The calorimeter uses lead as absorber material and has a total mass of 1350 kg. It is complemented by leakage counters made of scintillating plastic, with a total mass of 500 kg. Read More

Low Gain Avalanche Detectors (LGADs) are silicon sensors with a built-in charge multiplication layer providing a gain of typically 10 to 50. Due to their high signal-to-noise ratios, thin LGADs provide good time resolutions. LGADs with an active thickness of about 45 $\mu$m were produced at CNM Barcelona. Read More

Dry Dilution Refrigerators (DDR) based on pulse tube cryo-coolers have started to replace Wet Dilution Refrigerators (WDR) due to the ease and low cost of operation. However these advantages come at the cost of increased vibrations, induced by the pulse tube. In this work, we present the vibration measurements performed on three different commercial DDRs. Read More

This contribution to LCWS2016 presents recent developments within the CLICdp collaboration. An updated scenario for the staged operation of CLIC has been published; the accelerator will operate at 380 GeV, 1.5 TeV and 3 TeV. Read More

The analysis of beamstrahlung radiation, emitted from a beam of charged particles due to the electromagnetic interaction with a second beam of charged particles, provides a diagnostic tool that can be used to monitor beam-beam collisions in a $e^{+}e^{-}$ storage ring. In this paper we show that the beamstrahlung time profile is related to the timing of the collisions and the length of the beams, and how its measurement can be used to monitor and optimize collisions at the interaction point of the SuperKEKB collider. To measure the time dependence of beamstrahlung, we describe a method based on nonlinear frequency mixing in a nonlinear crystal of beamstrahlung radiation with photons from a pulsed laser. Read More

Affiliations: 1University of Oregon, 2University of Oregon

Studies of the response of the SiD silicon-tungsten electromagnetic calorimeter (ECal) are presented. Layers of highly granular (13 mm^2 pixels) silicon detectors embedded in thin gaps (~ 1 mm) between tungsten alloy plates give the SiD ECal the ability to separate electromagnetic showers in a crowded environment. A nine-layer prototype has been built and tested in a 12. Read More

The concept of a hybrid readout of a time projection chamber is presented. It combines a GEM-based amplification and a pad-based anode plane with a pixel chip as readout electronics. This way, a high granularity enabling to identify electron clusters from the primary ionisation is achieved as well as flexibility and large anode coverage. Read More

NA62 is a fixed-target experiment at the CERN SPS dedicated to measurements of rare kaon decays. Such measurements, like the branching fraction of the $K^{+} \rightarrow \pi^{+} \nu \bar\nu$ decay, have the potential to bring significant insights into new physics processes when comparison is made with precise theoretical predictions. For this purpose, innovative techniques have been developed, in particular, in the domain of low-mass tracking devices. Read More

An experimental scheme is introduced to measure multiple parameters that are encoded in the phase quadrature of a light beam. Using a modal description and a spectrally-resolved homodyne detection, it is shown that all of the information is collected simultaneously, such that a single measurement allows extracting the value of multiple parameters \emph{post-facto}. With a femtosecond laser source, we apply this scheme to a measurement of the delay between two pulses with a shot-noise limited sensitivity as well as extracting the dispersion value of a dispersive medium. Read More

In this work, a serial on-line cluster reconstruction technique based on FPGA technology was developed to compress experiment data and reduce the dead time of data transmission and storage. At the same time, X-ray imaging experiment based on a two-dimensional positive sensitive triple GEM detector with an effective readout area of 10 cm*10 cm was done to demonstrate this technique with FPGA development board. The result showed that the reconstruction technology was practicality and efficient. Read More

The LHCb RICH system provides hadron identification over a wide momentum range (2-100 GeV/c). This detector system is key to LHCb's precision flavour physics programme, which has unique sensitivity to physics beyond the standard model. This paper reports on the performance of the LHCb RICH in Run II, following significant changes in the detector and operating conditions. Read More

SKIROC2 is an ASIC to readout the silicon pad detectors for the electromagnetic calorimeter in the International Linear Collider. Characteristics of SKIROC2 and the new version of SKIROC2A, packaged with BGA, are measured with testboards and charge injection. The results on the signal-to-noise ratio of both trigger and ADC output, threshold tuning capability and timing resolution are presented. Read More

We are developing position sensitive silicon detectors (PSD) which have an electrode at each of four corners so that the incident position of a charged particle can be obtained using signals from the electrodes. It is expected that the position resolution the electromagnetic calorimeter (ECAL) of the ILD detector will be improved by introducing PSD into the detection layers. In this study, we irradiated collimated laser beams to the surface of the PSD, varying the incident position. Read More

A new scheme for an OAM communications system which exploits the radial component p of Laguerre Gauss modes in addition to the azimuthal component l generally used is presented. We derive a new encoding algorithm which makes use of the spatial distribution of intensity to create an alphabet dictionary for communication. We investigate the probability of error in decoding, for several detector options. Read More

We present a new method for torque magnetometry by using a commercially available membrane-type surface-stress sensor (MSS). This sensor has a silicon membrane supported by four beams in which piezoresistive paths are integrated. Although originally developed as a gas sensor, it can be used for torque measurement by modifying its on-chip wiring. Read More

An implementation of a novel of glass-based detector with fast response and wide detection range is needed to increase resolution for ultra-high energy cosmic rays detection. Such detector has been designed and built for the Horizon-T detector system at Tien Shan high-altitude Science Station. The main characteristics, such as design, duration of the detector pulse and calibration of a single particle response are discussed. Read More

We report on the design and construction of a high-energy photon polarimeter for measuring the degree of polarization of a linearly-polarized photon beam. The photon polarimeter uses the process of pair production on an atomic electron (triplet production). The azimuthal distribution of scattered atomic electrons following triplet production yields information regarding the degree of linear polarization of the incident photon beam. Read More

Horizon-T, a modern Extensive Air Showers (EAS) detector system, is constructed at Tien Shan high-altitude Science Station of Lebedev Physical Institute of the Russian Academy of Sciences at approximately 3340 meters above the sea level in order to study in the energy range above 10^16 eV coming from a wide range of zenith angles (0 - 85 degrees). The detector includes eight charged particle detection points and a Vavilov-Cherenkov radiation detector. Each charged particle detector response is calibrated using single MIP (minimally ionizing particle) signal. Read More

In the Alvarez-Macovski[1] method, the line integrals of the x-ray basis set coefficients are computed from measurements with multiple spectra. An important question is whether the data are invertible. This paper presents a proof that measurements with two spectra and a photon counting detector with pileup are invertible. Read More

To improve light yield and energy resolution in large-volume neutrino detectors, light concentrators are often mounted on photomultiplier tubes to increase the detection efficiency of optical photons from scintillation or Cherenkov light induced by charged particles. Previous designs of light concentrators are optimized to attain a wide field view of 90 degree and a high efficiency of above 98%. This improvement could be key to future neutrino experiments, such as Jinping, etc. Read More

Affiliations: 1Institut für Kern- und Teilchenphysik, Technische Universität Dresden, 2Institut für Kern- und Teilchenphysik, Technische Universität Dresden, 3VKTA - Radiation Protection, Analytics and Disposal Rossendorf e.V, 4Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 5Institute for Metallic Materials, IFW Dresden

An investigation of the {\alpha}-decay of $^{147}$Sm was performed using an ultra low-background Twin Frisch-Grid Ionisation Chamber (TF-GIC). Four natural samarium samples were produced using pulsed laser deposition in ultra high vacuum. The abundance of the $^{147}$Sm isotope was mea- sured using inductively coupled plasma mass spectrometry. Read More

We demonstrate that a cavity built of an array of elementary harmonic oscillators with negative mutual couplings exhibits a dispersion curve with lower order modes corresponding to higher frequencies. Such cavity arrays help to achieve infinitely large mode volumes with high resonant frequencies, where the mode volume for the composed array scales proportional to the number of elements, but the frequency remains constant. This gives an advantage over simultaneous averaging over the same number of independent cavities (giving the same scaling law), as the proposed approach requires only one measurement system. Read More

In this work we investigate the reflectivity of highly reflective multilayer polymer foils used in the CRESST experiment. The CRESST experiment searches directly for dark matter via operating scintillating CaWO$_4$ crystals as targets for elastic dark matter-nucleon scattering. In order to suppress background events, the experiment employs the so-called phonon-light technique which is based on the simultaneous measurement of the heat signal in the main CaWO$_4$ target crystal and of the emitted scintillation light with a separate cryogenic light detector. Read More

The MoEDAL experiment at the LHC is optimised to detect highly ionising particles such as magnetic monopoles, dyons and (multiply) electrically charged stable massive particles predicted in a number of theoretical scenarios. MoEDAL, deployed in the LHCb cavern, combines passive nuclear track detectors with magnetic monopole trapping volumes (MMTs), while spallation-product backgrounds are being monitored with an array of MediPix pixel detectors. An introduction to the detector concept and its physics reach, complementary to that of the large general purpose LHC experiments ATLAS and CMS, will be given. Read More

The European X-ray Free Electron Laser (XFEL.EU) will provide unprecedented peak brilliance and ultra-short and spatially coherent X-ray pulses in an energy range of 0.25 to 25 keV . Read More

In 2016 one arm of the AFP detector was installed and first data have been taken. In parallel with integration of the AFP subdetector into the ATLAS TDAQ and DCS systems, beam tests and preparations for the installation of the 2$^{\textrm{nd}}$ arm are performed. In this report, a status of the AFP project in the ATLAS experiment is discussed. Read More

By performing X-rays measurements in the "cosmic silence" of the underground laboratory of Gran Sasso, LNGS-INFN, we test a basic principle of quantum mechanics: the Pauli Exclusion Principle (PEP), for electrons. We present the achieved results of the VIP experiment and the ongoing VIP2 measurement aiming to gain two orders of magnitude improvement in testing PEP. We also use a similar experimental technique to search for radiation (X and gamma) predicted by continuous spontaneous localization models, which aim to solve the "measurement problem". Read More

Affiliations: 1Gran Sasso & L'Aquila U, 2Tennessee U, 3Tennessee U, 4Tennessee U, 5Tennessee U

The purpose of this paper is to demonstrate that if the transformation of neutron to mirror neutron exists with an oscillation time of the order of ten seconds, it can be detected in a rather simple disappearance and/or regeneration type experiment with an intense beam of cold neutrons. In the presence of a conjectural mirror magnetic field of unknown magnitude and direction, the resonance transformation conditions can be found by scanning the magnitude of the ordinary magnetic field in the range e.g. Read More

Increasing interest in energetic particle effects on weather and climate has motivated development of a miniature scintillator-based detector intended for deployment on meteorological radiosondes or unmanned airborne vehicles. The detector was calibrated with laboratory gamma sources up to 1.3 MeV, and known gamma peaks from natural radioactivity of up to 2. Read More

The results obtained by studying the background of neutrons produced by cosmic-ray muons in underground experimental facilities intended for rare-event searches and in surrounding rock are presented. The types of this rock may include granite, sedimentary rock, gypsum, and rock salt. Neutron production and transfer were simulated using the Geant4 and SHIELD transport codes. Read More

Coherent diffractive imaging (CDI) has been widely applied in the physical and biological sciences using synchrotron radiation, X-ray free electron lasers, high harmonic generation, electrons and optical lasers. However, although a limited number of dynamic studies have been reported, most CDI experiments have been focused on static systems. Here, we report the development of a general in situ CDI method for real time imaging of dynamic processes in solution. Read More

Organic liquid scintillators are used in a wide variety of applications in experimental nuclear and particle physics. Boron-loaded scintillators are particularly useful for detecting neutron captures, due to the high thermal neutron capture cross section of $^{10}$B. These scintillators are commonly used in neutron detectors, including the DarkSide-50 neutron veto, where the neutron may produce a signal when it scatters off protons in the scintillator or when it captures on $^{10}$B. Read More

Photo-multiplier tubes (PMTs) and silicon photo-multipliers (SiPMs) are detectors sensitive to single photons that are widely used for the detection of scintillation and Cerenkov light in subatomic physics and medical imaging. This paper presents a method for characterizing two of the main noise sources that PMTs and SiPMs share: dark noise and correlated noise (after-pulsing). The proposed method allows for a model-independent measurement of the after-pulsing timing distribution and dark noise rate. Read More

We report the realisation of a cyclotron trap assisted positron tungsten moderator for the conversion of positrons with a broad keV- few MeV energy spectrum to a mono-energetic eV beam with an efficiency of 1.8(2)% defined as the ratio of the slow positrons divided by the $\beta^+$ activity of the radioactive source. This is an improvement of almost two orders of magnitude compared to the state of the art of tungsten moderators. Read More

Authors: The Pierre Auger Collaboration, A. Aab, P. Abreu, M. Aglietta, E. J. Ahn, I. Al Samarai, I. F. M. Albuquerque, I. Allekotte, P. Allison, A. Almela, J. Alvarez Castillo, J. Alvarez-Muñiz, M. Ambrosio, G. A. Anastasi, L. Anchordoqui, B. Andrada, S. Andringa, C. Aramo, F. Arqueros, N. Arsene, H. Asorey, P. Assis, J. Aublin, G. Avila, A. M. Badescu, A. Balaceanu, C. Baus, J. J. Beatty, K. H. Becker, J. A. Bellido, C. Berat, M. E. Bertaina, X. Bertou, P. L. Biermann, P. Billoir, J. Biteau, S. G. Blaess, A. Blanco, J. Blazek, C. Bleve, M. Boháčová, D. Boncioli, C. Bonifazi, N. Borodai, A. M. Botti, J. Brack, I. Brancus, T. Bretz, A. Bridgeman, F. L. Briechle, P. Buchholz, A. Bueno, S. Buitink, M. Buscemi, K. S. Caballero-Mora, B. Caccianiga, L. Caccianiga, A. Cancio, F. Canfora, L. Caramete, R. Caruso, A. Castellina, G. Cataldi, L. Cazon, R. Cester, A. G. Chavez, A. Chiavassa, J. A. Chinellato, J. Chudoba, R. W. Clay, R. Colalillo, A. Coleman, L. Collica, M. R. Coluccia, R. Conceição, F. Contreras, M. J. Cooper, S. Coutu, C. E. Covault, J. Cronin, R. Dallier, S. D'Amico, B. Daniel, S. Dasso, K. Daumiller, B. R. Dawson, R. M. de Almeida, S. J. de Jong, G. De Mauro, J. R. T. de Mello Neto, I. De Mitri, J. de Oliveira, V. de Souza, J. Debatin, L. del Peral, O. Deligny, C. Di Giulio, A. Di Matteo, M. L. Díaz Castro, F. Diogo, C. Dobrigkeit, J. C. D'Olivo, A. Dorofeev, R. C. dos Anjos, M. T. Dova, A. Dundovic, J. Ebr, R. Engel, M. Erdmann, M. Erfani, C. O. Escobar, J. Espadanal, A. Etchegoyen, H. Falcke, K. Fang, G. Farrar, A. C. Fauth, N. Fazzini, B. Fick, J. M. Figueira, A. Filevich, A. Filipčič, O. Fratu, M. M. Freire, T. Fujii, A. Fuster, B. García, D. Garcia-Pinto, F. Gaté, H. Gemmeke, A. Gherghel-Lascu, P. L. Ghia, U. Giaccari, M. Giammarchi, M. Giller, D. Głas, C. Glaser, H. Glass, G. Golup, M. Gómez Berisso, P. F. Gómez Vitale, N. González, B. Gookin, J. Gordon, A. Gorgi, P. Gorham, P. Gouffon, A. F. Grillo, T. D. Grubb, F. Guarino, G. P. Guedes, M. R. Hampel, P. Hansen, D. Harari, T. A. Harrison, J. L. Harton, Q. Hasankiadeh, A. Haungs, T. Hebbeker, D. Heck, P. Heimann, A. E. Herve, G. C. Hill, C. Hojvat, E. Holt, P. Homola, J. R. Hörandel, P. Horvath, M. Hrabovský, T. Huege, J. Hulsman, A. Insolia, P. G. Isar, I. Jandt, S. Jansen, J. A. Johnsen, M. Josebachuili, A. Kääpä, O. Kambeitz, K. H. Kampert, P. Kasper, I. Katkov, B. Keilhauer, E. Kemp, R. M. Kieckhafer, H. O. Klages, M. Kleifges, J. Kleinfeller, R. Krause, N. Krohm, D. Kuempel, G. Kukec Mezek, N. Kunka, A. Kuotb Awad, D. LaHurd, L. Latronico, M. Lauscher, P. Lautridou, P. Lebrun, R. Legumina, M. A. Leigui de Oliveira, A. Letessier-Selvon, I. Lhenry-Yvon, K. Link, L. Lopes, R. López, A. López Casado, Q. Luce, A. Lucero, M. Malacari, M. Mallamaci, D. Mandat, P. Mantsch, A. G. Mariazzi, I. C. Mariş, G. Marsella, D. Martello, H. Martinez, O. Martínez Bravo, J. J. Masías Meza, H. J. Mathes, S. Mathys, J. Matthews, J. A. J. Matthews, G. Matthiae, E. Mayotte, P. O. Mazur, C. Medina, G. Medina-Tanco, D. Melo, A. Menshikov, S. Messina, M. I. Micheletti, L. Middendorf, I. A. Minaya, L. Miramonti, B. Mitrica, D. Mockler, L. Molina-Bueno, S. Mollerach, F. Montanet, C. Morello, M. Mostafá, G. Müller, M. A. Muller, S. Müller, I. Naranjo, S. Navas, L. Nellen, J. Neuser, P. H. Nguyen, M. Niculescu-Oglinzanu, M. Niechciol, L. Niemietz, T. Niggemann, D. Nitz, D. Nosek, V. Novotny, H. Nožka, L. A. Núñez, L. Ochilo, F. Oikonomou, A. Olinto, D. Pakk Selmi-Dei, M. Palatka, J. Pallotta, P. Papenbreer, G. Parente, A. Parra, T. Paul, M. Pech, F. Pedreira, J. Pękala, R. Pelayo, J. Peña-Rodriguez, L. A. S. Pereira, L. Perrone, C. Peters, S. Petrera, J. Phuntsok, R. Piegaia, T. Pierog, P. Pieroni, M. Pimenta, V. Pirronello, M. Platino, M. Plum, C. Porowski, R. R. Prado, P. Privitera, M. Prouza, E. J. Quel, S. Querchfeld, S. Quinn, R. Ramos-Pollant, J. Rautenberg, O. Ravel, D. Ravignani, D. Reinert, B. Revenu, J. Ridky, M. Risse, P. Ristori, V. Rizi, W. Rodrigues de Carvalho, G. Rodriguez Fernandez, J. Rodriguez Rojo, M. D. Rodríguez-Frías, D. Rogozin, J. Rosado, M. Roth, E. Roulet, A. C. Rovero, S. J. Saffi, A. Saftoiu, H. Salazar, A. Saleh, F. Salesa Greus, G. Salina, J. D. Sanabria Gomez, F. Sánchez, P. Sanchez-Lucas, E. M. Santos, E. Santos, F. Sarazin, B. Sarkar, R. Sarmento, C. Sarmiento-Cano, R. Sato, C. Scarso, M. Schauer, V. Scherini, H. Schieler, D. Schmidt, O. Scholten, P. Schovánek, F. G. Schröder, A. Schulz, J. Schulz, J. Schumacher, S. J. Sciutto, A. Segreto, M. Settimo, A. Shadkam, R. C. Shellard, G. Sigl, G. Silli, O. Sima, A. Śmiałkowski, R. Šmída, G. R. Snow, P. Sommers, S. Sonntag, J. Sorokin, R. Squartini, D. Stanca, S. Stanič, J. Stasielak, F. Strafella, F. Suarez, M. Suarez Durán, T. Sudholz, T. Suomijärvi, A. D. Supanitsky, M. S. Sutherland, J. Swain, Z. Szadkowski, O. A. Taborda, A. Tapia, A. Tepe, V. M. Theodoro, C. Timmermans, C. J. Todero Peixoto, L. Tomankova, B. Tomé, A. Tonachini, G. Torralba Elipe, D. Torres Machado, M. Torri, P. Travnicek, M. Trini, R. Ulrich, M. Unger, M. Urban, A. Valbuena-Delgado, J. F. Valdés Galicia, I. Valiño, L. Valore, G. van Aar, P. van Bodegom, A. M. van den Berg, A. van Vliet, E. Varela, B. Vargas Cárdenas, G. Varner, J. R. Vázquez, R. A. Vázquez, D. Veberič, V. Verzi, J. Vicha, L. Villaseñor, S. Vorobiov, H. Wahlberg, O. Wainberg, D. Walz, A. A. Watson, M. Weber, A. Weindl, L. Wiencke, H. Wilczyński, T. Winchen, D. Wittkowski, B. Wundheiler, S. Wykes, L. Yang, D. Yelos, A. Yushkov, E. Zas, D. Zavrtanik, M. Zavrtanik, A. Zepeda, B. Zimmermann, M. Ziolkowski, Z. Zong, F. Zuccarello

AMIGA (Auger Muons and Infill for the Ground Array) is an upgrade of the Pierre Auger Observatory designed to extend its energy range of detection and to directly measure the muon content of the cosmic ray primary particle showers. The array will be formed by an infill of surface water-Cherenkov detectors associated with buried scintillation counters employed for muon counting. Each counter is composed of three scintillation modules, with a 10 m$^2$ detection area per module. Read More

Authors: MicroBooNE collaboration, P. Abratenko, R. Acciarri, C. Adams, R. An, J. Asaadi, M. Auger, L. Bagby, S. Balasubramanian, B. Baller, C. Barnes, G. Barr, M. Bass, F. Bay, M. Bishai, A. Blake, T. Bolton, L. Bugel, L. Camilleri, D. Caratelli, B. Carls, R. Castillo Fernandez, F. Cavanna, H. Chen, E. Church, D. Cianci, E. Cohen, G. H. Collin, J. M. Conrad, M. Convery, J. I. Crespo-Anadon, M. Del Tutto, D. Devitt, S. Dytman, B. Eberly, A. Ereditato, L. Escudero Sanchez, J. Esquivel, B. T. Fleming, W. Foreman, A. P. Furmanski, D. Garcia-Gomez, G. T. Garvey, V. Genty, D. Goeldi, S. Gollapinni, N. Graf, E. Gramellini, H. Greenlee, R. Grosso, R. Guenette, A. Hackenburg, P. Hamilton, O. Hen, J. Hewes, C. Hill, J. Ho, G. Horton-Smith, E. -C. Huang, C. James, J. Jan de Vries, C. -M. Jen, L. Jiang, R. A. Johnson, B. J. P. Jones, J. Joshi, H. Jostlein, D. Kaleko, L. N. Kalousis, G. Karagiorgi, W. Ketchum, B. Kirby, M. Kirby, T. Kobilarcik, I. Kreslo, A. Laube, Y. Li, A. Lister, B. R. Littlejohn, S. Lockwitz, D. Lorca, W. C. Louis, M. Luethi, B. Lundberg, X. Luo, A. Marchionni, C. Mariani, J. Marshall, D. A. Martinez Caicedo, V. Meddage, T. Miceli, G. B. Mills, J. Moon, M. Mooney, C. D. Moore, J. Mousseau, R. Murrells, D. Naples, P. Nienaber, J. Nowak, O. Palamara, V. Paolone, V. Papavassiliou, S. F. Pate, Z. Pavlovic, E. Piasetzky, D. Porzio, G. Pulliam, X. Qian, J. L. Raaf, A. Rafique, L. Rochester, C. Rudolf von Rohr, B. Russell, D. W. Schmitz, A. Schukraft, W. Seligman, M. H. Shaevitz, J. Sinclair, E. L. Snider, M. Soderberg, S. Soldner-Rembold, S. R. Soleti, P. Spentzouris, J. Spitz, J. St. John, T. Strauss, A. M. Szelc, N. Tagg, K. Terao, M. Thomson, M. Toups, Y. -T. Tsai, S. Tufanli, T. Usher, R. G. Van de Water, B. Viren, M. Weber, J. Weston, D. A. Wickremasinghe, S. Wolbers, T. Wongjirad, K. Woodruff, T. Yang, L. Yates, G. P. Zeller, J. Zennamo, C. Zhang

We discuss a technique for measuring a charged particle's momentum by means of multiple Coulomb scattering (MCS) in the MicroBooNE liquid argon time projection chamber (LArTPC). This method does not require the full particle ionization track to be contained inside of the detector volume as other track momentum reconstruction methods do (range-based momentum reconstruction and calorimetric momentum reconstruction). We motivate use of this technique, describe a tuning of the underlying phenomenological formula, quantify its performance on fully contained beam-neutrino-induced muon tracks both in simulation and in data, and quantify its performance on exiting muon tracks in simulation. Read More

In high energy experiments such as active beam dump searches for rare decays and missing energy events, the beam purity is a crucial parameter. In this paper we present a technique to reject heavy charged particle contamination in the 100 GeV electron beam of the H4 beam line at CERN SPS. The method is based on the detection with BGO scintillators of the synchrotron radiation emitted by the electrons passing through a bending dipole magnet. Read More

Phase noise or frequency noise is a key metrics to evaluate the short term stability of a laser. This property is of a great interest for the applications but delicate to characterize, especially for narrow line-width lasers. In this letter, we demonstrate a digital cross correlation scheme to characterize the absolute phase noise of sub-hertz line-width lasers. Read More

Affiliations: 1National Center for Nanoscience and Technology, 2National Center for Nanoscience and Technology, 3National Center for Nanoscience and Technology, 4National Center for Nanoscience and Technology, 5National Center for Nanoscience and Technology, 6National Center for Nanoscience and Technology, 7China University of Petroleum-Beijing

A modified AC method based on micro-fabricated heater and resistive thermometers has been applied to measure the thermopower of microscale samples. A sinusoidal current with frequency {\omega} is passed to the heater to generate an oscillatory temperature difference across the sample at a frequency 2{\omega}, which simultaneously induces an AC thermoelectric voltage, also at the frequency 2{\omega}. A key step of the method is to extract amplitude and phase of the oscillatory temperature difference by probing the AC temperature variation at each individual thermometer. Read More

To suppress the muon background arising from the Beam Delivery System (BDS) of the International Linear Collider (ILC), and to hinder it from reaching the interaction region, two different shielding scenarios are under discussion: five cylindrical muon spoilers with or without an additional magnetized shielding wall. Due to cost and safety issues, the scenario preferred by the Machine-Detector-Interface (MDI) group is to omit the shielding wall, although omitting it also has disadvantages. To support the decision making for the muon shielding, the impact of the muons from the two different shielding scenarios was studied in a full Geant4 detector simulation of the SiD detector, one of two proposed detectors for the ILC. Read More

The beams at the ILC produce electron positron pairs due to beam-beam interactions. This note presents for the first time a study of these processes in a detailed simulation, which shows that these pair background particles appear at angles that extend to the inner layers of the detector. The full data set of pairs produced in one bunch crossing was used to calculate the helix tracks, which the particles form in the solenoid field of the SiD detector. Read More

Authors: Paul Malek1
Affiliations: 1Deutsches Elektronen Synchrotron

For the International Large Detector (ILD), foreseen to be built at the International Linear Collider (ILC), a Time Projection Chamber (TPC) is intended to be used as the main tracking detector. The amplification will be provided by Micro Pattern Gaseous Detectors (MPGDs). One option is the use of Gas Electron Multipliers (GEM) in combination with a segmented pad readout plane. Read More