Physics - Biological Physics Publications (50)


Physics - Biological Physics Publications

Proteins are biological polymers that underlie all cellular functions. The first high-resolution protein structures were determined by x-ray crystallography in the 1960s. Since then, there has been continued interest in understanding and predicting protein structure and stability. Read More

In time domain astronomy, recurrent transients present a special problem: how to infer total populations from limited observations. Monitoring observations may give a biassed view of the underlying population due to limitations on observing time, visibility and instrumental sensitivity. A similar problem exists in the life sciences, where animal populations (such as migratory birds) or disease prevalence, must be estimated from sparse and incomplete data. Read More

Affiliations: 1Linné Flow Centre, KTH Mechanics, 2DICCA, University of Genova, 3Linné Flow Centre, KTH Mechanics

Despite the ubiquity of fluid flows interacting with porous and elastic materials, we lack a validated non-empirical macroscale method for characterizing the flow over and through a poroelastic medium. We propose a computational tool to describe such configurations by deriving and validating a continuum model for the poroelastic bed and its interface with the above free fluid. We show that, using stress continuity condition and slip velocity condition at the interface, the effective model captures the effects of small changes in the microstructure anisotropy correctly and predicts the overall behaviour in a physically consistent and controllable manner. Read More

Trapping nanoscopic objects to observe their dynamic behaviour for extended periods of time is an ongoing quest. Particularly, sub-100nm transparent objects are hard to catch and most techniques rely on immobilisation or transient diffusion through a confocal laser focus. We present an Anti-Brownian ELectrokinetic trap (pioneered by A. Read More

Bacterial conglomerates such as biofilms and microcolonies are ubiquitous in nature and play an important role in industry and medicine. In contrast to well-mixed, diluted cultures routinely used in microbial research, bacteria in a microcolony interact mechanically with one another and with the substrate to which they are attached. Despite their ubiquity, little is known about the role of such mechanical interactions on growth and biological evolution of microbial populations. Read More

We show how active transport of ions can be interpreted as an entropy facilitated process. In this interpretation, the pore geometry through which substrates are transported can give rise to a driving force. This gives a direct link between the geometry and the changes in Gibbs energy required. Read More

The fiber g-ratio is the ratio of the inner to the outer diameter of the myelin sheath of a myelinated axon. It has a limited dynamic range in healthy white matter, as it is optimized for speed of signal conduction, cellular energetics, and spatial constraints. In vivo imaging of the g-ratio in health and disease would greatly increase our knowledge of the nervous system and our ability to diagnose, monitor, and treat disease. Read More

Catalytic swimmers have attracted much attention as alternatives to biological systems for examining collective microscopic dynamics and the response to physico-chemical signals. Yet, understanding and predicting even the most fundamental characteristics of their individual propulsion still raises important challenges. While chemical asymmetry is widely recognized as the cornerstone of catalytic propulsion, different experimental studies have reported that particles with identical chemical properties may propel in opposite directions. Read More

In this report, we applied expectation and maximization (EM) method described by Philips et al [1] to recover two-dimensional (2D) structure from multiple sparse signal images in random orientation. The detailed derivation of EM algorithm for 2D image reconstruction was evaluated. Data sets with average 40 photons per frame were successfully classified by orientation. Read More

We present OpenRBC, a coarse-grained molecular dynamics code, which is capable of performing an unprecedented in silico experiment --- simulating an entire mammal red blood cell lipid bilayer and cytoskeleton as modeled by 4 million mesoscopic particles --- using a single shared memory commodity workstation. To achieve this, we invented an adaptive spatial-searching algorithm to accelerate the computation of short-range pairwise interactions in an extremely sparse 3D space. The algorithm is based on a Voronoi partitioning of the point cloud of coarse-grained particles, and is continuously updated over the course of the simulation. Read More

Understanding the operation of biological molecular motors, nanoscale machines that transduce electrochemical energy into mechanical work, is enhanced by bottom-up strategies to synthesize novel motors. Read More

We show that macro-molecular self-assembly can recognize and classify high-dimensional patterns in the concentrations of $N$ distinct molecular species. Similar to associative neural networks, the recognition here leverages dynamical attractors to recognize and reconstruct partially corrupted patterns. Traditional parameters of pattern recognition theory, such as sparsity, fidelity, and capacity are related to physical parameters, such as nucleation barriers, interaction range, and non-equilibrium assembly forces. Read More

We report on changes in the Raman spectrum of live Escherichi coli (E.coli) that result from exposure to lethal fluences of 300 nm (UV-B) and 405 nm (violet) photons. In the first instance, the energy per photon of 4. Read More

We investigate the susceptible-infected-susceptible dynamics on configuration model networks. In an effort for the unification of current approaches, we consider a network whose edges are constantly being rearranged, with a tunable rewiring rate $\omega$. We perform a detailed stationary state analysis of the process, leading to a closed form expression of the absorbing-state threshold for an arbitrary rewiring rate. Read More

We study the stochastic dynamics of strongly-coupled excitable elements on a tree network. The peripheral nodes receive independent random inputs which may induce large spiking events propagating through the branches of the tree and leading to global coherent oscillations in the network. This scenario may be relevant to action potential generation in certain sensory neurons, which possess myelinated distal dendritic tree-like arbors with excitable nodes of Ranvier at peripheral and branching nodes and exhibit noisy periodic sequences of action potentials. Read More

Many state of the art methods for the thermodynamic and kinetic characterization of large and complex biomolecular systems by simulation rely on ensemble approaches, where data from large numbers of relatively short trajectories are integrated. In this context, Markov state models (MSMs) are extremely popular because they can be used to compute stationary quantities and long-time kinetics from ensembles of short simulations, provided that these short simulations are in "local equilibrium" within the MSM states. However, in the last over 15 years since the inception of MSMs, it has been controversially discussed and not yet been answered how deviations from local equilibrium can be detected, whether these deviations induce a practical bias in MSM estimation, and how to correct for them. Read More

Experiments have revealed a nontrivial cancer-inhibiting capability of liquid media treated by the plasma jet capable of forming thinly stratified self-organized patterns at a plasma-liquid interface. A pronounced cancer depressing activity towards at least two kinds of human cancer cells, namely breast cancer MDA-MB-231 and human glioblastoma U87 cancer lines, was demonstrated. After a short treatment at the thinly stratified self-organized plasma-liquid interface pattern, the cancer inhibiting media demonstrate well pronounced depression and apoptosis activities towards tumor cells, not achievable without interfacial stratification of plasma jet to thin (of several um) current filaments, which therefore play a pivotal (yet still not completely clear) role in building up the cancer inhibition properties. Read More

The control of brain dynamics provides great promise for the enhancement of cognitive function in humans, and by extension the betterment of their quality of life. Yet, successfully controlling dynamics in neural systems is particularly challenging, not least due to the immense complexity of the brain and the large set of interactions that can affect any single change. While we have gained some understanding of the control of single neurons, the control of large-scale neural systems---networks of multiply interacting components---remains poorly understood. Read More

Viruses are incapable of autonomous energy production. Although many experimental studies make it clear that viruses are parasitic entities that hijack the host's molecular resources, a detailed estimate for the energetic cost of viral synthesis is largely lacking. To quantify the energetic cost of viruses to their hosts, we enumerated the costs associated with two very distinct but representative DNA and RNA viruses, namely T4 and influenza. Read More

Circular polarization spectroscopy has proven to be an indispensable tool in photosynthesis research and (bio)-molecular research in general. Oxygenic photosystems typically display an asymmetric Cotton effect around the chlorophyll absorbance maximum with a signal $\leq 1 \%$. In vegetation, these signals are the direct result of the chirality of the supramolecular aggregates. Read More

The dispersal of cells from an initially constrained location is a crucial aspect of many physiological phenomena ranging from morphogenesis to tumour spreading. In such processes, the way cell-cell interactions impact the motion of single cells, and in turn the collective dynamics, remains unclear. Here, the spreading of micro-patterned colonies of non-cohesive cells is fully characterized from the complete set of individual trajectories. Read More

Recurrent networks of dynamic elements frequently exhibit emergent collective oscillations, which can display substantial regularity even when the individual elements are considerably noisy. How noise-induced dynamics at the local level coexists with regular oscillations at the global level is still unclear. Here we show that a combination of stochastic recurrence-based initiation with deterministic refractoriness in an excitable network can reconcile these two features, leading to maximum collective coherence for an intermediate noise level. Read More

Solid-state nanopores are promising tools for single molecule detection of both DNA and proteins. In this study, we investigate the patterns of ionic current blockades as DNA translocates into or out of the geometric confinement of such conically shaped pores. We studied how the geometry of a nanopore affects the detected ionic current signal of a translocating DNA molecule over a wide range of salt concentration. Read More

Monitoring the kinetics and conformational dynamics of single enzymes is crucial in order to better understand their biological functions as these motions and structural dynamics are usually unsynchronized among the molecules. Detecting the enzyme-reactant interactions and associated conformational changes of the enzyme on a single molecule basis, however, remain as a challenge with established optical techniques due to the commonly required labeling of the reactants or the enzyme itself. The labeling process is usually non-trivial and the labels themselves might skew the physical properties of the enzyme. Read More

From biofilm and colony formation in bacteria to wound healing and embryonic development in multicellular organisms, groups of living cells must often move collectively. While considerable study has probed the biophysical mechanisms of how eukaryotic cells generate forces during migration, little such study has been devoted to bacteria, in particular with regard to the question of how bacteria generate and coordinate forces during collective motion. This question is addressed here for the first time using traction force microscopy. Read More

Biological species have to cope with stochastic variations in both the external environment and the internal population dynamics. Theoretical studies and laboratory experiments suggest that population diversification could be an effective bet-hedging strategy for adaptation to temporally varying environments. Here we show that bet-hedging can also be effective against demographic fluctuations that cause extinction of local populations. Read More

Hybrid quantum mechanical-molecular mechanical (QM/MM) simulations are widely used in enzyme simulation. Over ten convergence studies of QM/MM methods have revealed over the past several years that key energetic and structural properties approach asymptotic limits with only very large (ca. 500-1000 atom) QM regions. Read More

We propose a bio-inspired, agent-based approach to describe the natural phenomenon of group chasing in both two and three dimensions. Using a set of local interaction rules we created a continuous-space and discrete-time model with time delay, external noise and limited acceleration. We implemented a unique collective chasing strategy, optimized its parameters and studied its properties when chasing a much faster, erratic escaper. Read More

Anisotropic collective patterns occur frequently in the morphogenesis of 2D biofilms. These patterns are often attributed to growth regulation mechanisms and differentiation based on gradients of diffusing nutrients and signalling molecules. Here, we employ a model of bacterial growth dynamics to show that even in the absence of growth regulation or differentiation, confinement by an enclosing medium such as agar can itself lead to stable pattern formation over time scales that are employed in experiments. Read More

Transport surrounding is full of all kinds of fields, like particle potential, external potential. Under these conditions, how elements work and how position and momentum redistribute in the diffusion? For enriching the Fick law in ordinary, nonequilibrium statistics physics need to be used to disintegrate the complex process. This study attempts to discuss the particle transport in the one-dimensional channel under external potential fields. Read More

Computational prediction of origin of replication (ORI) has been of great interest in bioinformatics and several methods including GC Skew, Z curve, auto-correlation etc. have been explored in the past. In this paper, we have extended the auto-correlation method to predict ORI location with much higher resolution for prokaryotes. Read More

Recently, numerical simulations of a stochastic model have shown that the density of vessel tips in tumor induced angiogenesis adopts a soliton-like profile [Sci. Rep. 6, 31296 (2016)]. Read More

In this paper we discuss the uniaxial propagation of transient waves within a semi-infinite viscoelastic Bessel medium. First, we provide the analytic expression for the response function of the material as we approach the wave-front. To do so, we take profit of a revisited version of the so called Buchen-Mainardi algorithm. Read More

Advances in experimental techniques are generating an increasing volume of publicly available ecologically and biologically relevant data and are revealing that living systems are characterized by the emergence of recurrent patterns and regularities. Several studies indicate that metabolic, gene-regulatory and species interaction networks possess a non-random architecture. One of the observed emergent patterns is sparsity, i. Read More

Molecular dynamics (MD) simulations are used to investigate $^1$H nuclear magnetic resonance (NMR) relaxation and diffusion of bulk $n$-C$_5$H$_{12}$ to $n$-C$_{17}$H$_{36}$ hydrocarbons and bulk water. The MD simulations of the $^1$H NMR relaxation times $T_{1,2}$ in the fast motion regime where $T_1 = T_2$ agree with measured (de-oxygenated) $T_2$ data at ambient conditions, without any adjustable parameters in the interpretation of the simulation data. Likewise, the translational diffusion $D_T$ coefficients calculated using simulation configurations are well-correlated with measured diffusion data at ambient conditions. Read More

Cell migration in morphogenesis and cancer metastasis typically involves interplay between different cell types. We construct and study a minimal, one-dimensional model comprised of two different motile cells with each cell represented as an active elastic dimer. The interaction between the two cells via cadherins is modeled as a spring that can rupture beyond a threshold force as it undergoes dynamic loading via the attached motile cells. Read More

The search for high-affinity aptamers for targets such as proteins, small molecules, or cancer cells remains a formidable endeavor. Systematic Evolution of Ligands by EXponential Enrichment (SELEX) offers an iterative process to discover these aptamers through evolutionary selection of high-affinity candidates from a highly diverse random pool. This randomness dictates an unknown population distribution of fitness parameters, encoded by the binding affinities, toward SELEX targets. Read More

Complex diseases can be modeled as damage to intracellular networks that results in abnormal cell behaviors. Network-based dynamic models such as Boolean models have been employed to model a variety of biological systems including those corresponding to disease. Previous work designed compensatory interactions to stabilize an attractor of a Boolean network after single node damage. Read More

Discussions of the hippocampus often focus on place cells, but many neurons are not place cells in any given environment. Here we describe the collective activity in such mixed populations, treating place and non-place cells on the same footing. We start with optical imaging experiments on CA1 in mice as they run along a virtual linear track, and use maximum entropy methods to approximate the distribution of patterns of activity in the population, matching the correlations between pairs of cells but otherwise assuming as little structure as possible. Read More

Extensive molecular dynamics simulations reveal that the interactions between proteins and poly(ethylene glycol)(PEG) can be described in terms of the surface composition of the proteins. PEG molecules accumulate around non-polar residues while avoiding polar ones. A solvent-accessible-surface-area model of protein adsorption on PEGylated nanoparticles accurately fits a large set of data on the composition of the protein corona recently obtained by label-free proteomic mass spectrometry. Read More

Cells and tissues exert forces and can actively change shape. This strikingly autonomous behavior is powered by the cytoskeleton, which includes an active gel of actin filaments, crosslinks, and myosin molecular motors. Although individual motors are only a few nm in size and exert minute forces of a few pN, cells spatially integrate the activity of an ensemble of motors to produce larger contractile forces (order nN and greater) on cellular, tissue, and organismal length scales (order 10 {\mu}m and greater). Read More

Fibrous networks are ideal functional materials since they provide mechanical rigidity at low weight. Such structures are omnipresent in natural biomaterials from cells to tissues, as well as in man-made materials from polymeric composites to paper and textiles. Here, we demonstrate that fibrous networks of the blood clotting protein fibrin undergo a strong and irreversible increase in their mechanical rigidity in response to compression. Read More

Interaction with divalent cations is of paramount importance for RNA structural stability and function. We here report a detailed molecular dynamics study of all the possible binding sites for Mg$^{2+}$ on a RNA duplex, including both direct (inner sphere) and indirect (outer sphere) binding. In order to tackle sampling issues, we develop a modified version of bias-exchange metadynamics which allows us to simultaneously compute affinities with previously unreported statistical accuracy. Read More

Efficient replication and assembly of virus particles are integral to the establishment of infection. In addition to the primary role of the capsid protein (CP) in encapsidating the RNA progeny, experimental evidence on positive sense single-stranded RNA viruses suggests that the CP also regulates RNA synthesis. Here, we demonstrate that replication of Satellite tobacco mosaic virus (STMV) is controlled by the cooperative interaction between STMV CP and the helper virus (HV) Tobacco mosaic virus (TMV) replicase. Read More

HIV-1 virions assemble as immature particles containing Gag polyproteins that are processed by the viral protease into individual components, resulting in the formation of mature infectious particles. There are two competing models for the process of forming the mature HIV-1 core: the disassembly and de novo reassembly model and the non-diffusional displacive model. To study the maturation pathway, we simulate HIV-1 maturation in vitro by digesting immature particles and assembled virus-like particles with recombinant HIV-1 protease and monitor the process with biochemical assays and cryoEM structural analysis in parallel. Read More

100 years after Smoluchowski introduces his approach to stochastic processes, they are now at the basis of mathematical and physical modeling in cellular biology: they are used for example to analyse and to extract features from large number (tens of thousands) of single molecular trajectories or to study the diffusive motion of molecules, proteins or receptors. Stochastic modeling is a new step in large data analysis that serves extracting cell biology concepts. We review here the Smoluchowski's approach to stochastic processes and provide several applications for coarse-graining diffusion, studying polymer models for understanding nuclear organization and finally, we discuss the stochastic jump dynamics of telomeres across cell division and stochastic gene regulation. Read More

We present a computational model to reconstruct ancestor trees of animals with sexual reproduction following the theoretical model presented in \textit{Phys. Rev. E} \textbf{90}, 022125 (2014). Read More

Circadian clocks must be able to entrain to time-varying signals to keep their oscillations in phase with the day-night rhythm. On the other hand, they must also exhibit input compensation: their period must remain about one day in different constant environments. The post-translational oscillator of the Kai system can be entrained by transient or oscillatory changes in the ATP fraction, yet is insensitive to constant changes in this fraction. Read More

We discuss propagation of traveling waves in a blood filled elastic artery with an axially symmetric dilatation (an idealized aneurysm). The processes in the injured artery are modelled by equations for the motion of the wall of the artery and by equation for the motion of the fluid (the blood). For the case when long-wave approximation holds the model equations are reduced to a version of the perturbed Korteweg-deVries equation. Read More

Gene expression levels carry information about signals that have functional significance for the organism. Using the gap gene network in the fruit fly embryo as an example, we show how this information can be decoded, building a dictionary that translates expression levels into a map of implied positions. The optimal decoder makes use of graded variations in absolute expression level, resulting in positional estimates that are precise to ~1% of the embryo's length. Read More