Physics - Atomic and Molecular Clusters Publications (50)

Search

Physics - Atomic and Molecular Clusters Publications

The interaction of a helium atom with intense short 800 nm laser pulse is studied theoretically beyond the single-active-electron approximation. For this purpose, the time-dependent Schr\"odinger equation for the two-electron wave packet driven by a linearly-polarized infrared pulse is solved by the time-dependent restricted-active-space configuration-interaction method (TD-RASCI) in the dipole velocity gauge. By systematically extending the space of active configurations, we investigate the role of the collective two-electron dynamics in the strong field ionization and high-order harmonic generation (HHG) processes. Read More


In this contribution I will review some of the researches that are currently being pursued in Padova (mainly within the In:Theory and Strength projects), focusing on the interdisciplinary applications of nuclear theory to several other branches of physics, with the aim of contributing to show the centrality of nuclear theory in the Italian scientific scenario and the prominence of this fertile field in fostering new physics. In particular, I will talk about: i) the recent solution of the long-standing "electron screening puzzle" that settles a fundamental controversy in nuclear astrophysics between the outcome of lab experiments on earth and nuclear reactions happening in stars; the application of algebraic methods to very diverse systems such as: ii) the supramolecular complex H2@C60, i.e. Read More


Partially-self-consistent gap-renormalization GW (grGW) is introduced to calculate quasiparticle (QP) energies within the many-body perturbation theory of Hedin. Self-consistency of the Green's function is obtained by renormalization of the band gap, removing the most significant approximation of the single-shot $\text{G}_{0}\text{W}_{0}$ approach. The formalism is performed as a post-processing step and thus, can be implemented within any GW algorithm which calculates the full frequency-dependent self-energies. Read More


We model an isothermal aggregation process of particles/atoms interacting according to the Lennard-Jones pair potential by mapping the energy landscapes of each cluster size $N$ onto stochastic networks, computing transition probabilities for the network for an $N$-particle cluster to the one for $N+1$, and connecting these networks into a single joint network. The attachment rate is a control parameter. The resulting network representing the aggregation of up to 14 particles contains 6417 vertices. Read More


Quasiparticle (QP) excitations are extremely important for understanding and predicting charge transfer and transport in molecules, nanostructures and extended systems. Since density functional theory (DFT) within Kohn-Sham (KS) formulation does not provide reliable QP energies, a many-body perturbation technique within the GW approximation are essential. The steep computational scaling of GW prohibits its use in extended, open boundary, systems with thousands of electrons and more. Read More


Chirality is ubiquitous in nature and fundamental in science, from particle physics to metamaterials.The most established technique of chiral discrimination - photoabsorption circular dichroism - relies on the magnetic properties of a chiral medium and yields an extremely weak chiral response. We propose and demonstrate a new, orders of magnitude more sensitive type of circular dichroism in neutral molecules: photoexitation circular dichroism. Read More


The ground bound states in the five-body muonic ions $a b \mu e_2$ (or $(a b \mu e_2)^{-}$), where $(a, b) = (p, d, t)$, are considered for the first time. As follows from accurate numerical computations of these five-body ions they are similar to the negatively charged hydrogen ion H$^{-}$ with a three-particle central quasi-nucleus $a b \mu$ (or $(a b \mu)^{+}$). These five-body ions play some role in the muon-catalyzed fusion of nuclear reaction in liquid deuterium and/or deuterium-tritium mixtures. Read More


We present an object-oriented Python library for computation of properties of highly-excited Rydberg states of alkali atoms. These include single-body effects such as dipole matrix elements, excited-state lifetimes (radiative and black-body limited) and Stark maps of atoms in external electric fields, as well as two-atom interaction potentials accounting for dipole and quadrupole coupling effects valid at both long and short range for arbitrary alignment of the atomic dipoles. The package is cross-referenced to precise measurements of atomic energy levels and features extensive documentation to facilitate rapid upgrade or expansion by users. Read More


We study the dynamics of transient charges formed in methane clusters following ionization by intense near-infrared laser pulses. Cluster ionization by 400 fs ($I=1 \times 10^{14}$ W/cm$^2$) pulses is highly efficient, resulting in the observation of a dominant C$^{3+}$ ion contribution. The C$^{4+}$ ion yield is very small, but is strongly enhanced by applying a time-delayed weak near-infrared pulse. Read More


We present a combined experimental and theoretical study of the charging dynamics of helium nanodroplets doped with atoms of different species and irradiated by intense near-infrared (NIR) laser pulses (<10^15 Wcm-2). In particular, we elucidate the interplay of dopant ionization inducing the ignition of a helium nanoplasma, and the charging of the dopant atoms driven by the ionized helium host. Most efficient nanoplasma ignition and charging is found when doping helium droplets with xenon atoms, in which case high charge states both of helium (He2+) and of xenon (Xe^21+) are detected. Read More


The results for binding energies of $^6$Li He$_2$ and $^7$Li He$_2$ systems are presented. They are obtained by solving Faddeev equations in configuration space. It is shown that the excited states in both systems are of the Efimov-type. Read More


It was recently shown that the exact potential driving the electron's dynamics in enhanced ionization of H$_2^+$ can have large contributions arising from dynamical electron-nuclear correlation, going beyond what any electrostatics-based model can provide[1]. This potential is defined via the exact factorization of the molecular wavefunction that allows the construction of a Schr\"odinger equation for the electronic system, in which the potential contains exactly the effect of coupling to the nuclear system and any external fields. Here we study enhanced ionization in isotopologues of H$_2^+$ in order to investigate nuclear-mass-dependence of these terms for this process. Read More


In this communication, an effective set of the Hartree-Fock equations are derived only for electrons of the muonic systems, i.e., molecules containing a positively charged muon, conceiving the muon as a quantum oscillator. Read More


Free-electron laser hard X-ray light sources can provide high fluence, femtosecond pulses, enabling the time-resolved probing of structural dynamics and elementary relaxation processes in molecules. Traditional X-ray elastic scattering from crystals in the ground state consists of sharp Bragg diffraction peaks that arise from pairs of molecules and reveal the ground state charge density. Scattering of ultrashort X-ray pulses from gases, liquids, and even single molecules is more complex and involves both single- and two- molecule contributions, diffuse (non-Bragg) features, elastic and inelastic components, contributions of electronic coherences in nonstationary states, and interferences between scattering off different states (heterodyne detection). Read More


The mechanism of ionization of helium droplets has been investigated in numerous reports but one observation has not found a satisfactory explanation: How are $He^+$ ions formed and ejected from undoped droplets at electron energies below the ionization threshold of the free atom? Does this path exist at all? A measurement of the ion yields of $He^+$ and $He_2^+$ as a function of electron energy, electron emission current, and droplet size reveals that metastable $He^{*-}$ anions play a crucial role in the formation of free $He^+$ at subthreshold energies. The proposed model is testable. Read More


Recent experimental progress in creating and controlling singular electron beams that carry orbital angular momentum allows for new types of local spectroscopies. We theoretically investigate the twisted-electron energy loss spectroscopy (EELS) from the C60 fullerene. Of particular interest are the strong multipolar collective excitations and their selective response to the orbital angular momentum of the impinging electron beam. Read More


Hydrogen bond (H-bond) covalency has recently been observed in ice and liquid water, while the penetrating molecular orbitals (MOs) in the H-bond region of most typical water dimer system, (H2O)2, have also been discovered. However, obtaining the quantitative contribution of these MOs to the H-bond interaction is still problematic. In this work, we introduced the orbital-resolved electron density projected integral (EDPI) along the H-bond to approach this problem. Read More


We describe a beam splitter for polar neutral molecules. An electrostatic hexapole initially confines and guides a supersonic expansion of ammonia, and it then smoothly transforms into two bent quadrupole guides, thus splitting the molecular beam in two correlated fractions. This paves the way towards molecular beam experiments wherein one beam is modified through interactions with, e. Read More


We have recorded the coherent diffraction images of individual xenon clusters using intense extreme ultraviolet free-electron laser pulses tuned to atomic and ionic resonances in order to elucidate the influence of light induced electronic changes on the diffraction pattern. The data show the emergence of a transient core-shell structure within the otherwise homogeneous sample. Simulations indicate that ionization and nanoplasma formation result in a cluster shell with strongly altered refraction. Read More


Non Born-Oppenheimer quantum dynamics of H$_{2}^{+}$ excited by shaped one-cycle laser pulses linearly polarized along the molecular axis have been studied by the numerical solution of the time-dependent Schr\"odinger equation within a %three-body three-dimensional model, including the internuclear separation, $R$, and the electron coordinates $z$ and $\rho$. Laser carrier frequencies corresponding to the wavelengths $\lambda_{l}=25$~nm through $\lambda_{l}=400$~nm were used and the amplitudes of the pulses were chosen such that the energy of H$_{2}^{+}$ was close to its dissociation threshold at the end of any laser pulse applied. It is shown that there exists a characteristic oscillation frequency $\omega_{\rm osc} \simeq 0. Read More


Recent developments in attosecond spectroscopy yield access to the correlated motion of electrons on their intrinsic time scales. Spin-flip dynamics is usually considered in the context of valence electronic states, where spin-orbit coupling is weak and processes related to the electron spin are usually driven by nuclear motion. However, for core-excited states, where the core hole has a nonzero angular momentum, spin-orbit coupling is strong enough to drive spin-flips on a much shorter time scale. Read More


The reliable prediction of optical and fundamental gaps of finite size systems using density functional theory requires to account for the potential self-interaction error, which is notorious for degrading the description of charge transfer transitions. One solution is provided by parameterized long-range corrected functionals such as LC-BLYP, which can be tuned such as to describe certain properties of the particular system at hand. Here, bare and 3-mercaptoprotionic acid covered \ce{Cd33Se33} quantum dots are investigated using the optimally tuned LC-BLYP functional. Read More


Recently we reported a series of numerical simulations proving that it is possible in principle to create an electronic wave packet and subsequent electronic motion in a neutral molecule photoexcited by a UV pump pulse within a few femtoseconds. We considered the ozone molecule: for this system the electronic wave packet leads to a dissociation process. In the present work, we investigate more specifically the time-resolved photoelectron angular distribution of the ozone molecule that provides a much more detailed description of the evolution of the electronic wave packet. Read More


Coherent diffractive imaging of individual free nanoparticles has opened novel routes for the in-situ analysis of their transient structural, optical, and electronic properties. So far, single-particle diffraction was assumed to be feasible only at extreme ultraviolet (XUV) and X-ray free-electron lasers, restricting this research field to large-scale facilities. Here we demonstrate single-shot imaging of isolated helium nanodroplets using XUV pulses from a femtosecond-laser driven high harmonic source. Read More


Nuclear recoil corrections of order $\alpha^6\,m^2/M$ are calculated for the lowest-lying triplet states of the helium atom. It improves the theoretical prediction for the isotope shift of the $2^3S-2^3P$ transition energy and influences the determination of the ${}^3\textrm{He}-{}^4\textrm{He}$ nuclear charge radii difference. This calculation is a step forward on the way towards the direct determination of the charge radius of the helium nucleus from spectroscopic measurements. Read More


Understanding the behavior of molecules interacting with superfluid helium represents a formidable challenge and, in general, requires approaches relying on large-scale numerical simulations. Here we demonstrate that experimental data collected over the last 20 years provide evidence that molecules immersed in superfluid helium form recently-predicted angulon quasiparticles [Phys. Rev. Read More


We study the photoionization properties of the C_60 versus C_240 molecule in a spherical jellium frame of density functional method. Two different approximations to the exchange-correlation (xc) functional are used: (i) The Gunnerson-Lundqvist parametrization [Phys. Rev. Read More


Due to the dominant electron capture by positrons from the molecular wall and the spatial dephasing across the wall-width, a powerful diffraction effect universally underlies the positronium (Ps) formation from fullerenes. This results into trains of resonances in the Ps formation cross section as a function of the positron beam energy, producing uniform structures in recoil momenta in analogy with classical single-slit diffraction fringes in the configuration space. The prediction opens a hitherto unknown avenue of Ps spectroscopy with nanomaterials. Read More


We report on a study of Dynamic Nuclear Polarization and electron and nuclear spin relaxation of atomic hydrogen and deuterium in solid molecular matrices of H$_{2}$, D$_{2}$, and HD mixtures. The electron and nuclear spin relaxation times ($T_{1e}$ and $T_{1N}$) were measured within the temperature range 0.15-2. Read More


The existence of the limit of a sample scattering intensity, as the scattering vector approaches zero, requires and is ensured by the property that the mean value of the scattering density fluctuation over volume $V$ asymptotically behaves, at large $V$s, as $\nu V^{-1/2}$, $\nu$ being an appropriate constant. Then, the limit of the normalized scattering intensity is equal to $\nu^2$. The implications of this result are also analyzed in the case of samples made up of two homogeneous phases. Read More


The influence of the crystallographic orientation of a typical metal surface, like aluminum, on electron emission spectra produced by grazing incidence of ultrashort laser pulses is investigated by using the band-structure-based-Volkov (BSB-V) approximation. The present version of the BSB-V approach includes not only a realistic description of the surface interaction, accounting for band structure effects, but also effects due to the induced potential that originates from the collective response of valence-band electrons to the external electromagnetic field. The model is applied to evaluate differential electron emission probabilities from the valence band of Al(100) and Al(111). Read More


We study a polar molecule immersed into a superfluid environment, such as a helium nanodroplet or a Bose-Einstein condensate, in the presence of an intense electrostatic field. We show that coupling of the molecular pendular motion, induced by the field, to the fluctuating bath leads to formation of pendulons -- spherical harmonic librators dressed by a field of many-particle excitations. We study the behavior of the pendulon in a broad range of molecule-bath and molecule-field interaction strengths, and reveal that its spectrum features series of instabilities which are absent in the field-free case of the angulon quasiparticle. Read More


Electric deflection measurements on liquid helium nanodroplets doped with individual polar molecules demonstrate that the cold superfluid matrix enables full orientation of the molecular dipole along the external field. This translates into a deflection force which is increased enormously by comparison with typical deflection experiments, and it becomes possible to measurably deflect neutral doped droplets with masses of tens to hundreds of thousands of Daltons. This approach permits preparation and study of continuous fluxes of fully oriented polar molecules and is broadly and generally applicable, including to complex and biological molecules. Read More


The results from mass spectrometry of clusters sputtered from Cs+ irradiated single-walled carbon nano-tubes (SWCNTs) as a function of energy and dose identify the nature of the resulting damage in the form of multiple vacancy generation. For pristine SWCNTs at all Cs+ energies, C2 is the most dominant species, followed by C3, C4 and C1. The experiments were performed in three stages: in the first stage, Cs+ energy E(Cs+) was varied. Read More


We have investigated the photo-stability of pristine and super-hydrogenated pyrene cations C$_{16}$H$_{10+m}^+, m = 0,6, \mathrm{\ or\ } 16$) by means of gas-phase action spectroscopy. Optical absorption spectra and photo-induced dissociation mass spectra are presented. By measuring the yield of mass-selected photo-fragment ions as a function of laser pulse intensity, the number of photons (and hence the energy) needed for fragmentation of the carbon backbone was determined. Read More


We introduce a local order metric (LOM) that measures the degree of order in the neighborhood of an atomic or molecular site in a condensed medium. The LOM maximizes the overlap between the spatial distribution of sites belonging to that neighborhood and the corresponding distribution in a suitable reference system. The LOM takes a value tending to zero for completely disordered environments and tending to one for environments that match perfectly the reference. Read More


Three C60 fragmentation regimes in fullerite bombarded by Cs+ are identified as a function of its energy. C2 is the major species sputtered at all energies. For E(Cs+) < 1 keV C2 emissions dominate. Read More


Carbon clusters have been generated by a novel technique of energetic heavy ion bombardment of amorphous graphite. The evolution of clusters and their subsequent fragmentation under continuing ion bombardment is revealed by detecting various clusters in the energy spectra of the direct recoils emitted as a result of collision between ions and the surface constituents. Read More


Electron ionization of helium droplets doped with cesium or potassium results in doubly and, for cesium, triply charged cluster ions. The smallest observable doubly charged clusters are $Cs_{9}^{2+}$ and $K_{11}^{2+}$; they are a factor two smaller than reported previously. The size of potassium dications approaches the Rayleigh limit nRay for which the fission barrier is calculated to vanish, i. Read More


We show, with both experiment and theory, that adsorption of $CO_2$ is sensitive to charge on a capturing model carbonaceous surface. In the experiment we dope superfluid helium droplets with $C_{60}$ and $CO_2$ and expose them to ionising free electrons. Both positively and negatively charged $C_{60}(CO_2)_n^{+/-}$ cluster ion distributions are observed with a high-resolution mass spectrometer and these show remarkable and reproducible anomalies in intensities that are strongly dependent on the charge. Read More


The dipolar dissociation of molecular oxygen due to 21-35 eV energy electron collision has been studied using the time sliced velocity map imaging technique. A rough estimation about the threshold of the process and the kinetic energy and angular distribution of the fragment negative ions are measured. The dipolar dissociation found to be occur due to pre-dissociation of a Rydberg state via ion-pair state for lower incident electron energies as well from also direct excitation to the ion-pair states for relatively higher primary beam energy. Read More


The desorption dynamics of rubidium dimers (Rb_2) off the surface of helium nanodroplets induced by laser excitation is studied employing both nanosecond and femtosecond ion imaging spectroscopy. Similarly to alkali metal atoms, we find that the Rb_2 desorption process resembles the dissociation of a diatomic molecule. However, both angular and energy distributions of detected Rb_2^+ ions appear to be most crucially determined by the Rb_2 intramolecular degrees of freedom rather than by those of the Rb_2He_N complex. Read More


Dipolar dissociation processes in the electron collisions with carbon monoxide have been studied using time of flight (TOF) mass spectroscopy in combination with the highly differential velocity slice imaging (VSI) technique. Probing ion-pair states both positive and/or negative ions may be detected. The ion yield curve of negative ions provides the threshold energy for the ion-pair production. Read More


Atomic partial charges appear in the Coulomb term of many force-field models and can be derived from electronic structure calculations with a myriad of atoms-in-molecules (AIM) methods. More advanced models have also been proposed, using the distributed nature of the electron cloud and atomic multipoles. In this work, an electrostatic force field is defined through a concise approximation of the electron density, for which the Coulomb interaction is trivially evaluated. Read More


To identify an analytical relation between the properties of polymers and their's monomer a Metal-Molecule-Metal (MMM) junction has been presented as an interesting and widely used object of research in which the molecule is a polymer which is able to conduct charge. The method used in this study is based on the Green's function approach in the tight-binding approximation using basic properties of matrices. For a polymer base MMM system, transmission, density of states (DOS) and local density of states (LDOS) have been calculated as a function of the hamiltonian of the monomer. Read More


The interaction of intense femtosecond laser pulses with atomic Argon clusters has been investigated by using nano-plasma model. Based on the dynamic simulations, ionization process, heating and expansion of a cluster after irradiation by femtosecond laser pulses at intensities up to 2*1017 Wcm-2 are studied. The analytical calculation provides ionization ratefor different mechanisms and time evolution of the density of electrons for different pulse shapes. Read More


We review different computational methods for the calculation of photoelectron spectra and angular distributions of atoms and molecules when excited by laser pulses using time-dependent density-functional theory (TDDFT) that are suitable for the description of electron emission in compact spatial regions. We derive and extend the time-dependent surface-flux method introduced in Reference [Tao L and Scrinzi A 2012 New Journal of Physics 14 013021] within a TDDFT formalism and compare its performance to other existing methods. We illustrate the performance of the new method by simulating strong-field ionization of C$_{60}$ fullerene and discuss final state effects in the orbital reconstruction of planar organic molecules. Read More


The comment by K. Hansen suggests that the time-of-flight mass spectrometry data in one table in our paper from 2103 in IJMS should be due to a proton contamination and correspond to protons p instead of deuterons D. The evidence for such a suggestion is a re-plotting of our data, giving a bond distance of 5. Read More


We performed a diabatization of the mutually perturbed $1^1\Pi$ and $2^1\Pi$ states of KRb based on both electronic structure calculation and direct coupled-channel deperturbation analysis of experimental energies. The potential energy curves (PECs) of the diabatic states and their scalar coupling were constructed from the \textit{ab initio} adiabatic PECs by analytically integrating the radial $\langle \psi_1^{ad}|\partial /\partial R|\psi_2^{ad}\rangle$ matrix element obtained by a finite-difference method. The diabatic potentials and electronic coupling function were refined by the least squares fitting of the rovibronic termvalues of the $1^1\Pi\sim 2^1\Pi$ complex. Read More