Nuclear Experiment Publications (50)

Search

Nuclear Experiment Publications

Relativistic heavy-ion collisions provide a unique opportunity to search for parity violation in non-central collisions. This could lead to charge separation perpendicular to the reaction plane. An event-by-event measurement of charge separation effect in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2. Read More


The proton is composed of quarks and gluons, bound by the most elusive mechanism of strong interaction called confinement. In this work, the dynamics of quarks and gluons are investigated using deeply virtual Compton scattering (DVCS): produced by a multi-GeV electron, a highly virtual photon scatters off the proton which subsequently radiates a high energy photon. Similarly to holography, measuring not only the magnitude but also the phase of the DVCS amplitude allows to perform 3D images of the internal structure of the proton. Read More


The nuclear force has been understood to have a repulsive core at short distances, similar to a molecular force, since Jastrow proposed it in 1951. The existence of the repulsion was experimentally confirmed from the proton-proton scattering 1S_0 phase shift, which becomes negative beyond 230 MeV. This repulsion is essential for preventing the nucleon-nucleon system from collapsing by attraction. Read More


Using the coalescence model based on nucleons from a blast-wave model with its parameters fitted to the measured proton transverse momentum spectrum and elliptic flow in heavy ion collisions at the Relativistic Heavy Ion Collider, we study the elliptic flows of light nuclei in these collisions. We find that to describe the measured elliptic flows of deuterons (anti-deuterons) and tritons (helium-3) requires that the emission source for nucleons of high transverse momentum is more elongated along the reaction plane than in the perpendicular direction. Our results thus suggest that the elliptic flows of light nuclei can be used to study the nucleon emission source in relativistic heavy ion collisions. Read More


Direct photon-hadron correlations are a golden channel to study parton in-medium energy loss in QGP. The modification of the effective fragmentation function for the away-side jet can be measured by comparing integrated away-side yields of direct photon-hadron pairs in heavy ion collisions to those in p+p. We measured per-trigger-yield of associated hadrons in Au+Au collisions and observed that there is a suppression compared to p+p for higher momentum fraction ($z_T$) hadrons. Read More


${}^{20}\mathrm{O}(d,p){}^{21}\mathrm{O}$ transfer reactions are described using momentum-space Faddeev-type equations for transition operators and including the vibrational excitation of the ${}^{20}\mathrm{O}$ core. The available experimental cross section data at 10.5 MeV/nucleon beam energy for the ${}^{21}\mathrm{O}$ ground state $\frac52^+$ and excited state $\frac12^+$ are quite well reproduced by our calculations including the core excitation. Read More


2017Mar

The hot, dense and strongly interacting medium known as the Quark Gluon Plasma (QGP) is produced in relativistic heavy-ion collisions at the Large Hadron Collider (LHC). Early in the collisions, quarks and gluons from the incoming nuclei collide to produce high momentum partons which fragment into collimated sprays of hadrons called "jets". In pp collisions, jet production is well understood within the framework of perturbative QCD and acts as a rigorous baseline measurement for jet quenching measurements. Read More


Fluctuations of conserved quantities, such as baryon, electric charge and strangeness number, are sensitive observables in heavy-ion collisions to search for the QCD phase transition and critical point. In this paper, we performed a systematical analysis on the various cumulants and cumulant ratios of event-by-event net-strangeness distributions in Au+Au collisions at $\sqrt{s_{NN}}$=7.7, 11. Read More


The study of exotic nuclei---nuclei with the ratio of neutron number $N$ to proton number $Z$ deviating much from that of those found in nature---is at the forefront of nuclear physics research because it can not only reveal novel nuclear properties and thus enrich our knowledge of atomic nuclei, but also help us to understand the origin of chemical elements in the nucleosynthesis. With the development of radioactive ion beam facilities around the world, more and more unstable nuclei become experimentally accessible. Many exotic nuclear phenomena have been observed or predicted in nuclei far from the $\beta$-stability line, such as neutron or proton halos, the shell evolution and changes of nuclear magic numbers, the island of inversion, soft-dipole excitations, clustering effects, new radioactivities, giant neutron halos, the shape decoupling between core and valence nucleons in deformed halo nuclei, etc. Read More


Following our earlier finding based on RHIC data on the dominant jet production from nucleus corona region, we reconsider this effect in nucleus-nucleus collisions at LHC energy. Our hypothesis was based on experimental data, which raised the idea of a finite formation time for the produced medium. At RHIC energy and in low density corona region this time reaches about 2 fm/c. Read More


Experiments using nuclei to probe new physics beyond the Standard Model, such as neutrinoless $\beta\beta$ decay searches testing whether neutrinos are their own antiparticle, and direct detection experiments aiming to identify the nature of dark matter, require accurate nuclear physics input for optimizing their discovery potential and for a correct interpretation of their results. This demands a detailed knowledge of the nuclear structure relevant for these processes. For instance, neutrinoless $\beta\beta$ decay nuclear matrix elements are very sensitive to the nuclear correlations in the initial and final nuclei, and the spin-dependent nuclear structure factors of dark matter scattering depend on the subtle distribution of the nuclear spin among all nucleons. Read More


The reaction nd -> p(nn) produce two slow neutrons in the final state instead of deuteron. In the first view we can take into account the binding energy e ~ 2.23 MeV but this approach can not explain all features which are observed in the momentum spectrum of the secondaries protons. Read More


2017Mar
Affiliations: 1Univ. of Cyprus & The Cyprus Inst., 2Temple Univ., 3Centro Fermi & Rome Tor Vergata, 4Rome Tor Vergata, 5The Cyprus Inst., 6DESY-Zeuthen, 7The Cyprus Inst., 8Bonn Univ., 9The Cyprus Inst., 10Grenoble, 11Univ. of Utah, 12Univ. of Bern

We present results on the light, strange and charm nucleon scalar and tensor charges from lattice QCD, using simulations with $N_f=2$ flavors of twisted mass Clover-improved fermions with a physical value of the pion mass. Both connected and disconnected contributions are included, enabling us to extract the isoscalar, strange and charm charges for the first time directly at the physical point. Furthermore, the renormalization is computed non-perturbatively for both isovector and isoscalar quantities. Read More


Within a modified Gogny-Hartree-Fock (GHF) energy density functional (EDF) encapsulating the nucleon-nucleon short-range correlations (SRC)-induced high momentum tail (HMT) in the single-nucleon momentum distribution, we investigate effects of the SRC-induced HMT on the density dependence of nuclear symmetry energy $E_{\rm{sym}}(\rho)$. After re-optimizing the modified GHF-EDF by reproducing the same empirical properties of symmetric nuclear matter (SNM), symmetry energy $E_{\rm{sym}}(\rho_0)$ and its slope $L$ as well as major features of nucleon optical potential at saturation density $\rho_0$, the \esym is found to decrease at both sub-saturation and supra-saturation densities, leading to a reduced curvature $K_{\rm{sym}}$ of \esym and subsequently a smaller coefficient $K_{\tau}$ for the isospin-dependence of nuclear incompressibility in better agreement with its experimental value. Astrophysical implications of the SRC-modified symmetry energy are also discussed. Read More


The measurements of open heavy-flavours, i.e. D mesons at central rapidity and leptons from charm and beauty decays at central and forward rapidity was studied in p-Pb collisions at $\sqrt{s_{{\rm{NN}}}}$ = 5. Read More


2017Mar
Authors: J. Adamczewski-Musch1, O. Arnold2, E. T. Atomssa3, C. Behnke4, A. Belounnas5, A. Belyaev6, J. C. Berger-Chen7, J. Biernat8, A. Blanco9, C. Blume10, M. Böhmer11, P. Bordalo12, S. Chernenko13, L. Chlad14, C. Deveaux15, J. Dreyer16, A. Dybczak17, E. Epple18, L. Fabbietti19, O. Fateev20, P. Filip21, P. Finocchiaro22, P. Fonte23, C. Franco24, J. Friese25, I. Fröhlich26, T. Galatyuk27, J. A. Garzón28, R. Gernhäuser29, M. Golubeva30, F. Guber31, M. Gumberidze32, S. Harabasz33, T. Heinz34, T. Hennino35, S. Hlavac36, C. Höhne37, R. Holzmann38, A. Ierusalimov39, A. Ivashkin40, B. Kämpfer41, T. Karavicheva42, B. Kardan43, I. Koenig44, W. Koenig45, B. W. Kolb46, G. Korcyl47, G. Kornakov48, R. Kotte49, W. Kühn50, A. Kugler51, T. Kunz52, A. Kurepin53, A. Kurilkin54, P. Kurilkin55, V. Ladygin56, R. Lalik57, K. Lapidus58, A. Lebedev59, T. Liu60, L. Lopes61, M. Lorenz62, T. Mahmoud63, L. Maier64, A. Mangiarotti65, J. Markert66, S. Maurus67, V. Metag68, J. Michel69, E. Morinière70, D. M. Mihaylov71, S. Morozov72, C. Müntz73, R. Münzer74, L. Naumann75, K. N. Nowakowski76, M. Palka77, Y. Parpottas78, V. Pechenov79, O. Pechenova80, O. Petukhov81, J. Pietraszko82, W. Przygoda83, S. Ramos84, B. Ramstein85, A. Reshetin86, P. Rodriguez-Ramos87, P. Rosier88, A. Rost89, A. Sadovsky90, P. Salabura91, T. Scheib92, H. Schuldes93, E. Schwab94, F. Scozzi95, F. Seck96, P. Sellheim97, J. Siebenson98, L. Silva99, Yu. G. Sobolev100, S. Spataro101, H. Ströbele102, J. Stroth103, P. Strzempek104, C. Sturm105, O. Svoboda106, P. Tlusty107, M. Traxler108, H. Tsertos109, E. Usenko110, V. Wagner111, C. Wendisch112, M. G. Wiebusch113, J. Wirth114, Y. Zanevsky115, P. Zumbruch116, A. V. Sarantsev117
Affiliations: 1GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany, 2Excellence Cluster 'Origin and Structure of the Universe', 85748 Garching, Germany, 3Institut de Physique Nucléaire, 4Institut für Kernphysik, Goethe-Universität, 60438 Frankfurt, Germany, 5Institut de Physique Nucléaire, 6Joint Institute for Nuclear Research, 141980 Dubna, Russia, 7Excellence Cluster 'Origin and Structure of the Universe', 85748 Garching, Germany, 8Smoluchowski Institute of Physics, Jagiellonian University of Cracow, 30-059 Kraków, Poland, 9LIP-Laboratório de Instrumentação e Física Experimental de Partículas, 3004-516 Coimbra, Portugal, 10Institut für Kernphysik, Goethe-Universität, 60438 Frankfurt, Germany, 11Physik Department E12, Technische Universität München, 85748 Garching, Germany, 12LIP-Laboratório de Instrumentação e Física Experimental de Partículas, 3004-516 Coimbra, Portugal, 13Joint Institute for Nuclear Research, 141980 Dubna, Russia, 14Nuclear Physics Institute, Czech Academy of Sciences, 25068 Rez, Czech Republic, 15II.Physikalisches Institut, Justus Liebig Universität Giessen, 35392 Giessen, Germany, 16Institut für Strahlenphysik, Helmholtz-Zentrum Dresden-Rossendorf, 01314 Dresden, Germany, 17Smoluchowski Institute of Physics, Jagiellonian University of Cracow, 30-059 Kraków, Poland, 18Excellence Cluster 'Origin and Structure of the Universe', 85748 Garching, Germany, 19Excellence Cluster 'Origin and Structure of the Universe', 85748 Garching, Germany, 20Joint Institute for Nuclear Research, 141980 Dubna, Russia, 21Institute of Physics, Slovak Academy of Sciences, 84228 Bratislava, Slovakia, 22Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud, 95125 Catania, Italy, 23LIP-Laboratório de Instrumentação e Física Experimental de Partículas, 3004-516 Coimbra, Portugal, 24LIP-Laboratório de Instrumentação e Física Experimental de Partículas, 3004-516 Coimbra, Portugal, 25Physik Department E12, Technische Universität München, 85748 Garching, Germany, 26Institut für Kernphysik, Goethe-Universität, 60438 Frankfurt, Germany, 27Technische Universität Darmstadt, 64289 Darmstadt, Germany, 28LabCAF. F. Física, Univ. de Santiago de Compostela, 15706 Santiago de Compostela, Spain, 29Physik Department E12, Technische Universität München, 85748 Garching, Germany, 30Institute for Nuclear Research, Russian Academy of Sciences, 117312 Moscow, Russia, 31Institute for Nuclear Research, Russian Academy of Sciences, 117312 Moscow, Russia, 32Technische Universität Darmstadt, 64289 Darmstadt, Germany, 33Technische Universität Darmstadt, 64289 Darmstadt, Germany, 34GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany, 35Institut de Physique Nucléaire, 36Institute of Physics, Slovak Academy of Sciences, 84228 Bratislava, Slovakia, 37II.Physikalisches Institut, Justus Liebig Universität Giessen, 35392 Giessen, Germany, 38GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany, 39Joint Institute for Nuclear Research, 141980 Dubna, Russia, 40Institute for Nuclear Research, Russian Academy of Sciences, 117312 Moscow, Russia, 41Institut für Strahlenphysik, Helmholtz-Zentrum Dresden-Rossendorf, 01314 Dresden, Germany, 42Institute for Nuclear Research, Russian Academy of Sciences, 117312 Moscow, Russia, 43Institut für Kernphysik, Goethe-Universität, 60438 Frankfurt, Germany, 44GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany, 45GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany, 46GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany, 47Smoluchowski Institute of Physics, Jagiellonian University of Cracow, 30-059 Kraków, Poland, 48Technische Universität Darmstadt, 64289 Darmstadt, Germany, 49Institut für Strahlenphysik, Helmholtz-Zentrum Dresden-Rossendorf, 01314 Dresden, Germany, 50II.Physikalisches Institut, Justus Liebig Universität Giessen, 35392 Giessen, Germany, 51Nuclear Physics Institute, Czech Academy of Sciences, 25068 Rez, Czech Republic, 52Physik Department E12, Technische Universität München, 85748 Garching, Germany, 53Institute for Nuclear Research, Russian Academy of Sciences, 117312 Moscow, Russia, 54Joint Institute for Nuclear Research, 141980 Dubna, Russia, 55Joint Institute for Nuclear Research, 141980 Dubna, Russia, 56Joint Institute for Nuclear Research, 141980 Dubna, Russia, 57Excellence Cluster 'Origin and Structure of the Universe', 85748 Garching, Germany, 58Excellence Cluster 'Origin and Structure of the Universe', 85748 Garching, Germany, 59Institute for Theoretical and Experimental Physics, 117218 Moscow, Russia, 60Institut de Physique Nucléaire, 61LIP-Laboratório de Instrumentação e Física Experimental de Partículas, 3004-516 Coimbra, Portugal, 62Institut für Kernphysik, Goethe-Universität, 60438 Frankfurt, Germany, 63II.Physikalisches Institut, Justus Liebig Universität Giessen, 35392 Giessen, Germany, 64Physik Department E12, Technische Universität München, 85748 Garching, Germany, 65LIP-Laboratório de Instrumentação e Física Experimental de Partículas, 3004-516 Coimbra, Portugal, 66Institut für Kernphysik, Goethe-Universität, 60438 Frankfurt, Germany, 67Physik Department E12, Technische Universität München, 85748 Garching, Germany, 68II.Physikalisches Institut, Justus Liebig Universität Giessen, 35392 Giessen, Germany, 69Institut für Kernphysik, Goethe-Universität, 60438 Frankfurt, Germany, 70Institut de Physique Nucléaire, 71Excellence Cluster 'Origin and Structure of the Universe', 85748 Garching, Germany, 72Institute for Nuclear Research, Russian Academy of Sciences, 117312 Moscow, Russia, 73Institut für Kernphysik, Goethe-Universität, 60438 Frankfurt, Germany, 74Excellence Cluster 'Origin and Structure of the Universe', 85748 Garching, Germany, 75Institut für Strahlenphysik, Helmholtz-Zentrum Dresden-Rossendorf, 01314 Dresden, Germany, 76Smoluchowski Institute of Physics, Jagiellonian University of Cracow, 30-059 Kraków, Poland, 77Smoluchowski Institute of Physics, Jagiellonian University of Cracow, 30-059 Kraków, Poland, 78Department of Physics, University of Cyprus, 1678 Nicosia, Cyprus, 79GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany, 80Institut für Kernphysik, Goethe-Universität, 60438 Frankfurt, Germany, 81Institute for Nuclear Research, Russian Academy of Sciences, 117312 Moscow, Russia, 82GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany, 83Smoluchowski Institute of Physics, Jagiellonian University of Cracow, 30-059 Kraków, Poland, 84LIP-Laboratório de Instrumentação e Física Experimental de Partículas, 3004-516 Coimbra, Portugal, 85Institut de Physique Nucléaire, 86Institute for Nuclear Research, Russian Academy of Sciences, 117312 Moscow, Russia, 87Nuclear Physics Institute, Czech Academy of Sciences, 25068 Rez, Czech Republic, 88Institut de Physique Nucléaire, 89Technische Universität Darmstadt, 64289 Darmstadt, Germany, 90Institute for Nuclear Research, Russian Academy of Sciences, 117312 Moscow, Russia, 91Smoluchowski Institute of Physics, Jagiellonian University of Cracow, 30-059 Kraków, Poland, 92Institut für Kernphysik, Goethe-Universität, 60438 Frankfurt, Germany, 93Institut für Kernphysik, Goethe-Universität, 60438 Frankfurt, Germany, 94GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany, 95Technische Universität Darmstadt, 64289 Darmstadt, Germany, 96Technische Universität Darmstadt, 64289 Darmstadt, Germany, 97Institut für Kernphysik, Goethe-Universität, 60438 Frankfurt, Germany, 98Physik Department E12, Technische Universität München, 85748 Garching, Germany, 99LIP-Laboratório de Instrumentação e Física Experimental de Partículas, 3004-516 Coimbra, Portugal, 100Nuclear Physics Institute, Czech Academy of Sciences, 25068 Rez, Czech Republic, 101Dipartimento di Fisica and INFN, Università di Torino, 10125 Torino, Italy, 102Institut für Kernphysik, Goethe-Universität, 60438 Frankfurt, Germany, 103Institut für Kernphysik, Goethe-Universität, 60438 Frankfurt, Germany, 104Smoluchowski Institute of Physics, Jagiellonian University of Cracow, 30-059 Kraków, Poland, 105GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany, 106Nuclear Physics Institute, Czech Academy of Sciences, 25068 Rez, Czech Republic, 107Nuclear Physics Institute, Czech Academy of Sciences, 25068 Rez, Czech Republic, 108GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany, 109Department of Physics, University of Cyprus, 1678 Nicosia, Cyprus, 110Institute for Nuclear Research, Russian Academy of Sciences, 117312 Moscow, Russia, 111Nuclear Physics Institute, Czech Academy of Sciences, 25068 Rez, Czech Republic, 112GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany, 113Institut für Kernphysik, Goethe-Universität, 60438 Frankfurt, Germany, 114Excellence Cluster 'Origin and Structure of the Universe', 85748 Garching, Germany, 115Joint Institute for Nuclear Research, 141980 Dubna, Russia, 116GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany, 117NRC "Kurchatov Institute", PNPI, 188300, Gatchina, Russia

We report on the investigation of dielectron production in tagged quasi-free neutron-proton collisions by using a deuteron beam of kinetic energy 1.25 GeV/u inpinging on a liquid hydrogen target. Our measurements with HADES confirm a significant excess of $e^+e^-$ pairs above the $\pi^{0}$ mass in the exclusive channel $dp \to npe^{+}e^{-}(p_{spect})$ as compared to the exclusive channel $ppe^{+}e^{-}$ measured in proton-proton collisions at the same energy. Read More


2017Mar
Authors: J. Adamczewski-Musch1, O. Arnold2, C. Behnke3, A. Belounnas4, A. Belyaev5, J. C. Berger-Chen6, J. Biernat7, A. Blanco8, C. Blume9, M. Böhmer10, P. Bordalo11, S. Chernenko12, L. Chlad13, C. Deveaux14, J. Dreyer15, A. Dybczak16, E. Epple17, L. Fabbietti18, O. Fateev19, P. Filip20, P. Fonte21, C. Franco22, J. Friese23, I. Fröhlich24, T. Galatyuk25, J. A. Garzon26, R. Gernhäuser27, M. Golubeva28, F. Guber29, M. Gumberidze30, S. Harabasz31, T. Heinz32, T. Hennino33, S. Hlavac34, C. Höhne35, R. Holzmann36, A. Ierusalimov37, A. Ivashkin38, B. Kämpfer39, T. Karavicheva40, B. Kardan41, I. Koenig42, W. Koenig43, B. W. Kolb44, G. Korcy45, G. Kornakov46, R. Kotte47, W. Kühn48, A. Kugler49, T. Kunz50, A. Kurepin51, A. Kurilkin52, P. Kurilkin53, V. Ladygin54, R. Lalik55, K. Lapidus56, A. Lebedev57, L. Lopes58, M. Lorenz59, T. Mahmoud60, L. Maier61, A. Mangiarotti62, J. Markert63, S. Maurus64, V. Metag65, J. Michel66, D. M. Mihaylov67, S. Morozov68, C. Müntz69, R. Münzer70, L. Naumann71, K. N. Nowakowski72, M. Palka73, Y. Parpottas74, V. Pechenov75, O. Pechenova76, O. Petukhov77, J. Pietraszko78, W. Przygoda79, S. Ramos80, B. Ramstein81, A. Reshetin82, P. Rodriguez-Ramos83, P. Rosier84, A. Rost85, A. Sadovsky86, P. Salabura87, T. Scheib88, H. Schuldes89, E. Schwab90, F. Scozzi91, F. Seck92, P. Sellheim93, J. Siebenson94, L. Silva95, Yu. G. Sobolev96, S. Spataro97, H. Ströbele98, J. Stroth99, P. Strzempek100, C. Sturm101, O. Svoboda102, M. Szala103, P. Tlusty104, M. Traxler105, H. Tsertos106, E. Usenko107, V. Wagner108, C. Wendisch109, M. G. Wiebusch110, J. Wirth111, Y. Zanevsky112, P. Zumbruch113
Affiliations: 1HADES collaboration, 2HADES collaboration, 3HADES collaboration, 4HADES collaboration, 5HADES collaboration, 6HADES collaboration, 7HADES collaboration, 8HADES collaboration, 9HADES collaboration, 10HADES collaboration, 11HADES collaboration, 12HADES collaboration, 13HADES collaboration, 14HADES collaboration, 15HADES collaboration, 16HADES collaboration, 17HADES collaboration, 18HADES collaboration, 19HADES collaboration, 20HADES collaboration, 21HADES collaboration, 22HADES collaboration, 23HADES collaboration, 24HADES collaboration, 25HADES collaboration, 26HADES collaboration, 27HADES collaboration, 28HADES collaboration, 29HADES collaboration, 30HADES collaboration, 31HADES collaboration, 32HADES collaboration, 33HADES collaboration, 34HADES collaboration, 35HADES collaboration, 36HADES collaboration, 37HADES collaboration, 38HADES collaboration, 39HADES collaboration, 40HADES collaboration, 41HADES collaboration, 42HADES collaboration, 43HADES collaboration, 44HADES collaboration, 45HADES collaboration, 46HADES collaboration, 47HADES collaboration, 48HADES collaboration, 49HADES collaboration, 50HADES collaboration, 51HADES collaboration, 52HADES collaboration, 53HADES collaboration, 54HADES collaboration, 55HADES collaboration, 56HADES collaboration, 57HADES collaboration, 58HADES collaboration, 59HADES collaboration, 60HADES collaboration, 61HADES collaboration, 62HADES collaboration, 63HADES collaboration, 64HADES collaboration, 65HADES collaboration, 66HADES collaboration, 67HADES collaboration, 68HADES collaboration, 69HADES collaboration, 70HADES collaboration, 71HADES collaboration, 72HADES collaboration, 73HADES collaboration, 74HADES collaboration, 75HADES collaboration, 76HADES collaboration, 77HADES collaboration, 78HADES collaboration, 79HADES collaboration, 80HADES collaboration, 81HADES collaboration, 82HADES collaboration, 83HADES collaboration, 84HADES collaboration, 85HADES collaboration, 86HADES collaboration, 87HADES collaboration, 88HADES collaboration, 89HADES collaboration, 90HADES collaboration, 91HADES collaboration, 92HADES collaboration, 93HADES collaboration, 94HADES collaboration, 95HADES collaboration, 96HADES collaboration, 97HADES collaboration, 98HADES collaboration, 99HADES collaboration, 100HADES collaboration, 101HADES collaboration, 102HADES collaboration, 103HADES collaboration, 104HADES collaboration, 105HADES collaboration, 106HADES collaboration, 107HADES collaboration, 108HADES collaboration, 109HADES collaboration, 110HADES collaboration, 111HADES collaboration, 112HADES collaboration, 113HADES collaboration

We present first data on charged kaons and {\phi} mesons in Au+Au collisions at a kinetic beam energy of 1.23A GeV. As observed already at slightly higher beam energies, we find significantly different slopes for the K+ and K- transverse-mass spectra, and no significant increase of the the K-/K+ multiplicity ratio with increasing centrality of the collision. Read More


2017Mar
Affiliations: 1Joint Institute of Nuclear Research, 141980 Dubna, Russia, 2Smoluchowski Institute of Physics, Jagiellonian University of Cracow, 30-059 Kraków, Poland, 3LabCAF. F. Física, Univ. de Santiago de Compostela, 15706 Santiago de Compostela, Spain, 4Joint Institute of Nuclear Research, 141980 Dubna, Russia, 5Physik Department E12, Technische Universität München, 85748 Garching, Germany, 6LIP-Laboratório de Instrumentação e Física Experimental de Partículas, 3004-516 Coimbra, Portugal, 7Physik Department E12, Technische Universität München, 85748 Garching, Germany, 8Institut de Physique Nucléaire, CNRS-IN2P3, Univ. Paris-Sud, Université Paris-Saclay, 91406 Orsay Cedex, France, 9LabCAF. F. Física, Univ. de Santiago de Compostela, 15706 Santiago de Compostela, Spain, 10Joint Institute of Nuclear Research, 141980 Dubna, Russia, 11Smoluchowski Institute of Physics, Jagiellonian University of Cracow, 30-059 Kraków, Poland, 12Physik Department E12, Technische Universität München, 85748 Garching, Germany, 13Physik Department E12, Technische Universität München, 85748 Garching, Germany, 14Joint Institute of Nuclear Research, 141980 Dubna, Russia, 15Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud, 95125 Catania, Italy, 16LIP-Laboratório de Instrumentação e Física Experimental de Partículas, 3004-516 Coimbra, Portugal, 17Physik Department E12, Technische Universität München, 85748 Garching, Germany, 18Institut für Kernphysik, Goethe-Universität, 60438 Frankfurt, Germany, 19Technische Universität Darmstadt, 64289 Darmstadt, Germany, 20LabCAF. F. Física, Univ. de Santiago de Compostela, 15706 Santiago de Compostela, Spain, 21Physik Department E12, Technische Universität München, 85748 Garching, Germany, 22Institut für Kernphysik, Goethe-Universität, 60438 Frankfurt, Germany, 23Institute for Nuclear Research, Russian Academy of Science, 117312 Moscow, Russia, 24Technische Universität Darmstadt, 64289 Darmstadt, Germany, 25Institute for Nuclear Research, Russian Academy of Science, 117312 Moscow, Russia, 26Technische Universität Darmstadt, 64289 Darmstadt, Germany, 27GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany, 28Institut de Physique Nucléaire, CNRS-IN2P3, Univ. Paris-Sud, Université Paris-Saclay, 91406 Orsay Cedex, France, 29GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany, 30Joint Institute of Nuclear Research, 141980 Dubna, Russia, 31Istituto Nazionale di Fisica Nucleare, Sezione di Milano, 20133 Milano, Italy, 32Institute for Nuclear Research, Russian Academy of Science, 117312 Moscow, Russia, 33Physik Department E12, Technische Universität München, 85748 Garching, Germany, 34Institut für Strahlenphysik, Helmholtz-Zentrum Dresden-Rossendorf, 01314 Dresden, Germany, 35Institute for Nuclear Research, Russian Academy of Science, 117312 Moscow, Russia, 36GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany, 37GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany, 38GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany, 39Technische Universität Darmstadt, 64289 Darmstadt, Germany, 40Institut für Strahlenphysik, Helmholtz-Zentrum Dresden-Rossendorf, 01314 Dresden, Germany, 41Nuclear Physics Institute, Academy of Sciences of Czech Republic, 25068 Rez, Czech Republic, 42Nuclear Physics Institute, Academy of Sciences of Czech Republic, 25068 Rez, Czech Republic, 43Physik Department E12, Technische Universität München, 85748 Garching, Germany, 44Smoluchowski Institute of Physics, Jagiellonian University of Cracow, 30-059 Kraków, Poland, 45II.Physikalisches Institut, Justus Liebig Universität Giessen, 35392 Giessen, Germany, 46Nuclear Physics Institute, Academy of Sciences of Czech Republic, 25068 Rez, Czech Republic, 47Institute for Nuclear Research, Russian Academy of Science, 117312 Moscow, Russia, 48Joint Institute of Nuclear Research, 141980 Dubna, Russia, 49Physik Department E12, Technische Universität München, 85748 Garching, Germany, 50GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany, 51Physik Department E12, Technische Universität München, 85748 Garching, Germany, 52Institute of Theoretical and Experimental Physics, 117218 Moscow, Russia, 53Institut de Physique Nucléaire, CNRS-IN2P3, Univ. Paris-Sud, Université Paris-Saclay, 91406 Orsay Cedex, France, 54LIP-Laboratório de Instrumentação e Física Experimental de Partículas, 3004-516 Coimbra, Portugal, 55Institut für Kernphysik, Goethe-Universität, 60438 Frankfurt, Germany, 56Physik Department E12, Technische Universität München, 85748 Garching, Germany, 57LIP-Laboratório de Instrumentação e Física Experimental de Partículas, 3004-516 Coimbra, Portugal, 58Institut für Kernphysik, Goethe-Universität, 60438 Frankfurt, Germany, 59II.Physikalisches Institut, Justus Liebig Universität Giessen, 35392 Giessen, Germany, 60Smoluchowski Institute of Physics, Jagiellonian University of Cracow, 30-059 Kraków, Poland, 61Institut für Kernphysik, Goethe-Universität, 60438 Frankfurt, Germany, 62Institut für Kernphysik, Goethe-Universität, 60438 Frankfurt, Germany, 63Physik Department E12, Technische Universität München, 85748 Garching, Germany, 64Institut für Strahlenphysik, Helmholtz-Zentrum Dresden-Rossendorf, 01314 Dresden, Germany, 65Institut für Kernphysik, Goethe-Universität, 60438 Frankfurt, Germany, 66Smoluchowski Institute of Physics, Jagiellonian University of Cracow, 30-059 Kraków, Poland, 67Department of Physics, University of Cyprus, 1678 Nicosia, Cyprus, 68GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany, 69Institut für Kernphysik, Goethe-Universität, 60438 Frankfurt, Germany, 70GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany, 71Smoluchowski Institute of Physics, Jagiellonian University of Cracow, 30-059 Kraków, Poland, 72Institut de Physique Nucléaire, CNRS-IN2P3, Univ. Paris-Sud, Université Paris-Saclay, 91406 Orsay Cedex, France, 73Institute for Nuclear Research, Russian Academy of Science, 117312 Moscow, Russia, 74Institut für Kernphysik, Goethe-Universität, 60438 Frankfurt, Germany, 75Institute for Nuclear Research, Russian Academy of Science, 117312 Moscow, Russia, 76Smoluchowski Institute of Physics, Jagiellonian University of Cracow, 30-059 Kraków, Poland, 77Lawrence Berkeley National Laboratory, Berkeley, USA, 78GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany, 79Physik Department E12, Technische Universität München, 85748 Garching, Germany, 80Nuclear Physics Institute, Academy of Sciences of Czech Republic, 25068 Rez, Czech Republic, 81Dipartimento di Fisica and INFN, Università di Torino, 10125 Torino, Italy, 82II.Physikalisches Institut, Justus Liebig Universität Giessen, 35392 Giessen, Germany, 83Institut für Kernphysik, Goethe-Universität, 60438 Frankfurt, Germany, 84Institut für Kernphysik, Goethe-Universität, 60438 Frankfurt, Germany, 85GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany, 86Institut für Kernphysik, Goethe-Universität, 60438 Frankfurt, Germany, 87Institut für Kernphysik, Goethe-Universität, 60438 Frankfurt, Germany, 88Nuclear Physics Institute, Academy of Sciences of Czech Republic, 25068 Rez, Czech Republic, 89GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany, 90Smoluchowski Institute of Physics, Jagiellonian University of Cracow, 30-059 Kraków, Poland, 91Department of Physics, University of Cyprus, 1678 Nicosia, Cyprus, 92Joint Institute of Nuclear Research, 141980 Dubna, Russia, 93Nuclear Physics Institute, Academy of Sciences of Czech Republic, 25068 Rez, Czech Republic, 94Physik Department E12, Technische Universität München, 85748 Garching, Germany, 95Institut für Strahlenphysik, Helmholtz-Zentrum Dresden-Rossendorf, 01314 Dresden, Germany, 96Institut für Strahlenphysik, Helmholtz-Zentrum Dresden-Rossendorf, 01314 Dresden, Germany, 97GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany, 98Joint Institute of Nuclear Research, 141980 Dubna, Russia, 99NRC "Kurchatov Institute", PNPI, 188300, Gatchina, Russia, 100NRC "Kurchatov Institute", PNPI, 188300, Gatchina, Russia

Baryon resonance production in proton-proton collisions at a kinetic beam energy of 1.25 GeV is investigated. The multi-differential data were measured by the HADES collaboration. Read More


The ALICE experiment is dedicated to the study of the Quark-Gluon Plasma (QGP), a state of matter where, due to high temperature and density, quarks and gluons are deconfined. One of the probes studied to investigate this state of matter is the production of charmonium states, such as the J/$\psi$ and the $\psi$(2S). Indeed, the presence of the QGP is expected to modify the charmonium production yields, due to a balance between the color screening of the charm quark potential and a recombination mechanism. Read More


Spin and isospin are essential degrees of freedom in nuclear systems, and the relevant studies on their properties play important roles not only in nuclear physics but also in nuclear astrophysics, particle physics, and so on. In this presentation for the IUPAP Young Scientist Prize 2016, I would like to introduce the microscopic studies on nuclear spin-isospin properties in the framework of covariant density functional theory (DFT), by taking a few works that I have been joining in as examples. It is seen that the covariant scheme plays an important role in describing the spin properties in a consistent way, such as the spin-orbit splitting, the pseudospin symmetry, etc. Read More


One-neutron removal $(p,pn)$ reactions induced by two-neutron Borromean nuclei are studied within a Transfer-to-the-Continuum (TC) reaction framework, which incorporates the three-body character of the incident nucleus. The relative energy distribution of the residual unbound two-body subsystem, which is assumed to retain information on the structure of the original three-body projectile, is computed by evaluating the transition amplitude for different neutron-core final states in the continuum. These transition amplitudes depend on the overlaps between the original three-body ground-state wave function and the two-body continuum states populated in the reaction, thus ensuring a consistent description of the incident and final nuclei. Read More


In this work, a serial on-line cluster reconstruction technique based on FPGA technology was developed to compress experiment data and reduce the dead time of data transmission and storage. At the same time, X-ray imaging experiment based on a two-dimensional positive sensitive triple GEM detector with an effective readout area of 10 cm*10 cm was done to demonstrate this technique with FPGA development board. The result showed that the reconstruction technology was practicality and efficient. Read More


The ($^{11}$B,$^{11}$Li) double charge-exchange reaction (DCER) at $E(^{11}$B)/$A$=80 MeV was measured for the first time to demonstrate the feasibility of the reaction for studying neutrino nuclear responses for double beta decays (DBD). The $^{13}$C($^{11}$B,$^{11}$Li)$^{13}$O reaction shows strengths at the ground state and low and high excitation giant resonance regions. The $^{56}$Fe ($^{11}$B,$^{11}$Li) $^{56}$Ni reaction shows the large strengths in the possible double giant resonance region and beyond, but shows no strengths in the low excitation region below 5 MeV, suggesting strong concentration of the DBD strength at the high excitation region. Read More


We study time evolution of critical fluctuations of conserved charges near the QCD critical point in the context of relativistic heavy ion collisions. A stochastic diffusion equation is employed in order to describe the diffusion property of the critical fluctuation arising from the coupling of the order parameter field to conserved charges. We show that the diffusion property gives rise to a possibility of probing the early time fluctuations through the rapidity window dependence of the second-order cumulant and correlation function of conserved charges. Read More


We report on the design and construction of a high-energy photon polarimeter for measuring the degree of polarization of a linearly-polarized photon beam. The photon polarimeter uses the process of pair production on an atomic electron (triplet production). The azimuthal distribution of scattered atomic electrons following triplet production yields information regarding the degree of linear polarization of the incident photon beam. Read More


2017Mar
Authors: J. Adamczewski-Musch1, O. Arnold2, E. T. Atomssa3, C. Behnke4, A. Belounnas5, A. Belyaev6, J. C. Berger-Chen7, J. Biernat8, A. Blanco9, C. Blume10, M. Böhmer11, P. Bordalo12, S. Chernenko13, L. Chlad14, C. Deveaux15, J. Dreyer16, A. Dybczak17, E. Epple18, L. Fabbietti19, O. Fateev20, P. Filip21, P. Finocchiaro22, P. Fonte23, C. Franco24, J. Friese25, I. Fröhlich26, T. Galatyuk27, J. A. Garzón28, R. Gernhäuser29, M. Golubeva30, F. Guber31, M. Gumberidze32, S. Harabasz33, T. Heinz34, T. Hennino35, S. Hlavac36, C. Höhne37, R. Holzmann38, A. Ierusalimov39, A. Ivashkin40, B. Kämpfer41, T. Karavicheva42, B. Kardan43, I. Koenig44, W. Koenig45, B. W. Kolb46, G. Korcyl47, G. Kornakov48, R. Kotte49, W. Kühn50, A. Kugler51, T. Kunz52, A. Kurepin53, A. Kurilkin54, P. Kurilkin55, V. Ladygin56, R. Lalik57, K. Lapidus58, A. Lebedev59, T. Liu60, L. Lopes61, M. Lorenz62, T. Mahmoud63, L. Maier64, A. Mangiarotti65, J. Markert66, S. Maurus67, V. Metag68, J. Michel69, E. Morinière70, D. M. Mihaylov71, S. Morozov72, C. Müntz73, R. Münzer74, L. Naumann75, K. N. Nowakowski76, M. Palka77, Y. Parpottas78, V. Pechenov79, O. Pechenova80, O. Petukhov81, J. Pietraszko82, W. Przygoda83, S. Ramos84, B. Ramstein85, A. Reshetin86, P. Rodriguez-Ramos87, P. Rosier88, A. Rost89, A. Sadovsky90, P. Salabura91, T. Scheib92, H. Schuldes93, E. Schwab94, F. Scozzi95, F. Seck96, P. Sellheim97, J. Siebenson98, L. Silva99, Yu. G. Sobolev100, S. Spataro101, H. Ströbele102, J. Stroth103, P. Strzempek104, C. Sturm105, O. Svoboda106, P. Tlusty107, M. Traxler108, H. Tsertos109, E. Usenko110, V. Wagner111, C. Wendisch112, M. G. Wiebusch113, J. Wirth114, Y. Zanevsky115, P. Zumbruch116, A. V. Sarantsev117
Affiliations: 1GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany, 2Excellence Cluster 'Origin and Structure of the Universe', 85748 Garching, Germany, 3Institut de Physique Nucléaire, 4Institut für Kernphysik, Goethe-Universität, 60438 Frankfurt, Germany, 5Institut de Physique Nucléaire, 6Joint Institute for Nuclear Research, 141980 Dubna, Russia, 7Excellence Cluster 'Origin and Structure of the Universe', 85748 Garching, Germany, 8Smoluchowski Institute of Physics, Jagiellonian University of Cracow, 30-059 Kraków, Poland, 9LIP-Laboratório de Instrumentação e Física Experimental de Partículas, 3004-516 Coimbra, Portugal, 10Institut für Kernphysik, Goethe-Universität, 60438 Frankfurt, Germany, 11Physik Department E12, Technische Universität München, 85748 Garching, Germany, 12LIP-Laboratório de Instrumentação e Física Experimental de Partículas, 3004-516 Coimbra, Portugal, 13Joint Institute for Nuclear Research, 141980 Dubna, Russia, 14Nuclear Physics Institute, Czech Academy of Sciences, 25068 Rez, Czech Republic, 15II.Physikalisches Institut, Justus Liebig Universität Giessen, 35392 Giessen, Germany, 16Institut für Strahlenphysik, Helmholtz-Zentrum Dresden-Rossendorf, 01314 Dresden, Germany, 17Smoluchowski Institute of Physics, Jagiellonian University of Cracow, 30-059 Kraków, Poland, 18Excellence Cluster 'Origin and Structure of the Universe', 85748 Garching, Germany, 19Excellence Cluster 'Origin and Structure of the Universe', 85748 Garching, Germany, 20Joint Institute for Nuclear Research, 141980 Dubna, Russia, 21Institute of Physics, Slovak Academy of Sciences, 84228 Bratislava, Slovakia, 22Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud, 95125 Catania, Italy, 23LIP-Laboratório de Instrumentação e Física Experimental de Partículas, 3004-516 Coimbra, Portugal, 24LIP-Laboratório de Instrumentação e Física Experimental de Partículas, 3004-516 Coimbra, Portugal, 25Physik Department E12, Technische Universität München, 85748 Garching, Germany, 26Institut für Kernphysik, Goethe-Universität, 60438 Frankfurt, Germany, 27Technische Universität Darmstadt, 64289 Darmstadt, Germany, 28LabCAF. F. Física, Univ. de Santiago de Compostela, 15706 Santiago de Compostela, Spain, 29Physik Department E12, Technische Universität München, 85748 Garching, Germany, 30Institute for Nuclear Research, Russian Academy of Sciences, 117312 Moscow, Russia, 31Institute for Nuclear Research, Russian Academy of Sciences, 117312 Moscow, Russia, 32Technische Universität Darmstadt, 64289 Darmstadt, Germany, 33Technische Universität Darmstadt, 64289 Darmstadt, Germany, 34GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany, 35Institut de Physique Nucléaire, 36Institute of Physics, Slovak Academy of Sciences, 84228 Bratislava, Slovakia, 37II.Physikalisches Institut, Justus Liebig Universität Giessen, 35392 Giessen, Germany, 38GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany, 39Joint Institute for Nuclear Research, 141980 Dubna, Russia, 40Institute for Nuclear Research, Russian Academy of Sciences, 117312 Moscow, Russia, 41Institut für Strahlenphysik, Helmholtz-Zentrum Dresden-Rossendorf, 01314 Dresden, Germany, 42Institute for Nuclear Research, Russian Academy of Sciences, 117312 Moscow, Russia, 43Institut für Kernphysik, Goethe-Universität, 60438 Frankfurt, Germany, 44GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany, 45GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany, 46GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany, 47Smoluchowski Institute of Physics, Jagiellonian University of Cracow, 30-059 Kraków, Poland, 48Technische Universität Darmstadt, 64289 Darmstadt, Germany, 49Institut für Strahlenphysik, Helmholtz-Zentrum Dresden-Rossendorf, 01314 Dresden, Germany, 50II.Physikalisches Institut, Justus Liebig Universität Giessen, 35392 Giessen, Germany, 51Nuclear Physics Institute, Czech Academy of Sciences, 25068 Rez, Czech Republic, 52Physik Department E12, Technische Universität München, 85748 Garching, Germany, 53Institute for Nuclear Research, Russian Academy of Sciences, 117312 Moscow, Russia, 54Joint Institute for Nuclear Research, 141980 Dubna, Russia, 55Joint Institute for Nuclear Research, 141980 Dubna, Russia, 56Joint Institute for Nuclear Research, 141980 Dubna, Russia, 57Excellence Cluster 'Origin and Structure of the Universe', 85748 Garching, Germany, 58Excellence Cluster 'Origin and Structure of the Universe', 85748 Garching, Germany, 59Institute for Theoretical and Experimental Physics, 117218 Moscow, Russia, 60Institut de Physique Nucléaire, 61LIP-Laboratório de Instrumentação e Física Experimental de Partículas, 3004-516 Coimbra, Portugal, 62Institut für Kernphysik, Goethe-Universität, 60438 Frankfurt, Germany, 63II.Physikalisches Institut, Justus Liebig Universität Giessen, 35392 Giessen, Germany, 64Physik Department E12, Technische Universität München, 85748 Garching, Germany, 65LIP-Laboratório de Instrumentação e Física Experimental de Partículas, 3004-516 Coimbra, Portugal, 66Institut für Kernphysik, Goethe-Universität, 60438 Frankfurt, Germany, 67Physik Department E12, Technische Universität München, 85748 Garching, Germany, 68II.Physikalisches Institut, Justus Liebig Universität Giessen, 35392 Giessen, Germany, 69Institut für Kernphysik, Goethe-Universität, 60438 Frankfurt, Germany, 70Institut de Physique Nucléaire, 71Excellence Cluster 'Origin and Structure of the Universe', 85748 Garching, Germany, 72Institute for Nuclear Research, Russian Academy of Sciences, 117312 Moscow, Russia, 73Institut für Kernphysik, Goethe-Universität, 60438 Frankfurt, Germany, 74Excellence Cluster 'Origin and Structure of the Universe', 85748 Garching, Germany, 75Institut für Strahlenphysik, Helmholtz-Zentrum Dresden-Rossendorf, 01314 Dresden, Germany, 76Smoluchowski Institute of Physics, Jagiellonian University of Cracow, 30-059 Kraków, Poland, 77Smoluchowski Institute of Physics, Jagiellonian University of Cracow, 30-059 Kraków, Poland, 78Department of Physics, University of Cyprus, 1678 Nicosia, Cyprus, 79GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany, 80Institut für Kernphysik, Goethe-Universität, 60438 Frankfurt, Germany, 81Institute for Nuclear Research, Russian Academy of Sciences, 117312 Moscow, Russia, 82GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany, 83Smoluchowski Institute of Physics, Jagiellonian University of Cracow, 30-059 Kraków, Poland, 84LIP-Laboratório de Instrumentação e Física Experimental de Partículas, 3004-516 Coimbra, Portugal, 85Institut de Physique Nucléaire, 86Institute for Nuclear Research, Russian Academy of Sciences, 117312 Moscow, Russia, 87Nuclear Physics Institute, Czech Academy of Sciences, 25068 Rez, Czech Republic, 88Institut de Physique Nucléaire, 89Technische Universität Darmstadt, 64289 Darmstadt, Germany, 90Institute for Nuclear Research, Russian Academy of Sciences, 117312 Moscow, Russia, 91Smoluchowski Institute of Physics, Jagiellonian University of Cracow, 30-059 Kraków, Poland, 92Institut für Kernphysik, Goethe-Universität, 60438 Frankfurt, Germany, 93Institut für Kernphysik, Goethe-Universität, 60438 Frankfurt, Germany, 94GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany, 95Technische Universität Darmstadt, 64289 Darmstadt, Germany, 96Technische Universität Darmstadt, 64289 Darmstadt, Germany, 97Institut für Kernphysik, Goethe-Universität, 60438 Frankfurt, Germany, 98Physik Department E12, Technische Universität München, 85748 Garching, Germany, 99LIP-Laboratório de Instrumentação e Física Experimental de Partículas, 3004-516 Coimbra, Portugal, 100Nuclear Physics Institute, Czech Academy of Sciences, 25068 Rez, Czech Republic, 101Dipartimento di Fisica and INFN, Università di Torino, 10125 Torino, Italy, 102Institut für Kernphysik, Goethe-Universität, 60438 Frankfurt, Germany, 103Institut für Kernphysik, Goethe-Universität, 60438 Frankfurt, Germany, 104Smoluchowski Institute of Physics, Jagiellonian University of Cracow, 30-059 Kraków, Poland, 105GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany, 106Nuclear Physics Institute, Czech Academy of Sciences, 25068 Rez, Czech Republic, 107Nuclear Physics Institute, Czech Academy of Sciences, 25068 Rez, Czech Republic, 108GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany, 109Department of Physics, University of Cyprus, 1678 Nicosia, Cyprus, 110Institute for Nuclear Research, Russian Academy of Sciences, 117312 Moscow, Russia, 111Nuclear Physics Institute, Czech Academy of Sciences, 25068 Rez, Czech Republic, 112GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany, 113Institut für Kernphysik, Goethe-Universität, 60438 Frankfurt, Germany, 114Excellence Cluster 'Origin and Structure of the Universe', 85748 Garching, Germany, 115Joint Institute for Nuclear Research, 141980 Dubna, Russia, 116GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany, 117NRC "Kurchatov Institute", PNPI, 188300, Gatchina, Russia

We report on the investigation of $\Delta$(1232) production and decay in proton-proton collisions at a kinetic energy of 1.25 GeV measured with HADES. Exclusive dilepton decay channels $ppe^{+}e^{-}$ and $ppe^{+}e^{-}\gamma$ have been studied and compared with the partial wave analysis of the hadronic $pp\pi^{0}$ channel. Read More


Various theories have predicted the deep Dirac levels (DDLs) in atoms for many years. However, the existence of the DDL is still under debating, and need to be confirmed experimentally. With the development of high intensive lasers, nowadays, electrons can been accelerated to relativistic energy by high intensive lasers, electron-positron pairs can be created, and nuclear reactions can been ignited, which provide a new tool to explore the DDL related fields. Read More


The new event generator TWOPEG for the channel $e p \rightarrow e' p' \pi^{+} \pi^{-}$ has been developed. It uses an advanced method of event generation with weights and employs the five-fold differential structure functions from the recent versions of the JM model fit to all results on charged double pion photo- and electroproduction cross sections from CLAS (both published and preliminary). In the areas covered by measured CLAS data, TWOPEG successfully reproduces the available integrated and single-differential double pion cross sections. Read More


2017Mar
Affiliations: 1Institut für Kern- und Teilchenphysik, Technische Universität Dresden, 2Institut für Kern- und Teilchenphysik, Technische Universität Dresden, 3VKTA - Radiation Protection, Analytics and Disposal Rossendorf e.V, 4Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 5Institute for Metallic Materials, IFW Dresden

An investigation of the {\alpha}-decay of $^{147}$Sm was performed using an ultra low-background Twin Frisch-Grid Ionisation Chamber (TF-GIC). Four natural samarium samples were produced using pulsed laser deposition in ultra high vacuum. The abundance of the $^{147}$Sm isotope was mea- sured using inductively coupled plasma mass spectrometry. Read More


Recently, the compositeness, defined as the norm of a two-body wave function for bound and resonance states, has been investigated to discuss the internal structure of hadrons in terms of hadronic molecular components. From the studies of the compositeness, it has been clarified that the two-body wave function of a bound state can be extracted from the residue of the scattering amplitude at the bound state pole. Of special interest is that the two-body wave function from the scattering amplitude is automatically normalized. Read More


Background: The accurate determination of atomic final states following nuclear $\beta$ decay plays an important role in many experiments. In particular, the charge state distributions of ions following nuclear $\beta$ decay are important for determinations of the $\beta-\nu$ angular correlation with improved precision. Purpose: Our measurement aims at providing benchmarks to test theoretical calculations. Read More


2017Mar
Authors: CLAS Collaboration, I. Bedlinskiy, V. Kubarovsky, P. Stoler, K. P. Adhikari, Z. Akbar, S. Anefalos Pereira, H. Avakian, J. Ball, N. A. Baltzell, M. Battaglieri, V. Batourine, A. S. Biselli, S. Boiarinov, W. J. Briscoe, V. D. Burkert, T. Cao, D. S. Carman, A. Celentano, S. Chandavar, G. Charles, G. Ciullo, L. Clark, L. Colaneri, P. L. Cole, M. Contalbrigo, V. Crede, A. D'Angelo, N. Dashyan, R. De Vita, E. De Sanctis, A. Deur, C. Djalali, R. Dupre, A. El Alaoui, L. El Fassi, L. Elouadrhiri, P. Eugenio, E. Fanchini, G. Fedotov, R. Fersch, A. Filippi, J. A. Fleming, T. A. Forest, M. Garçon, N. Gevorgyan, Y. Ghandilyan, G. P. Gilfoyle, K. L. Giovanetti, F. X. Girod, C. Gleason, E. Golovatch, R. W. Gothe, K. A. Griffioen, M. Guidal, L. Guo, K. Hafidi, H. Hakobyan, C. Hanretty, N. Harrison, M. Hattawy, K. Hicks, S. M. Hughes, C. E. Hyde, Y. Ilieva, D. G. Ireland, B. S. Ishkhanov, E. L. Isupov, D. Jenkins, H. Jiang, H. S. Jo, K. Joo, S. Joosten, D. Keller, G. Khachatryan, M. Khachatryan, M. Khandaker, A. Kim, W. Kim, F. J. Klein, S. E. Kuhn, S. V. Kuleshov, L. Lanza, P. Lenisa, K. Livingston, I. J. D. MacGregor, N. Markov, B. McKinnon, Z. E. Meziani, M. Mirazita, V. Mokeev, R. A. Montgomery, A. Movsisyan, C. Munoz Camacho, P. Nadel-Turonski, L. A. Net, A. Ni, S. Niccolai, G. Niculescu, M. Osipenko, A. I. Ostrovidov, M. Paolone, R. Paremuzyan, K. Park, E. Pasyuk, P. Peng, W. Phelps, S. Pisano, O. Pogorelko, J. W. Price, Y. Prok, D. Protopopescu, A. J. R. Puckett, B. A. Raue, M. Ripani, A. Rizzo, G. Rosner, P. Rossi, P. Roy, F. Sabatié, M. S. Saini, C. Salgado, R. A. Schumacher, Y. G. Sharabian, Iu. Skorodumina, G. D. Smith, D. Sokhan, N. Sparveris, S. Stepanyan, I. I. Strakovsky, S. Strauch, M. Taiuti, Ye Tian, B. Torayev, M. Turisini, M. Ungaro, H. Voskanyan, E. Voutier, N. K. Walford, D. P. Watts, X. Wei, L. B. Weinstein, M. H. Wood, M. Yurov, N. Zachariou, J. Zhang, I. Zonta

The cross section of the exclusive $\eta$ electroproduction reaction $ep\to e^\prime p^\prime \eta$ was measured at Jefferson Lab with a 5.75-GeV electron beam and the CLAS detector. Differential cross sections $d^4\sigma/dtdQ^2dx_Bd\phi_\eta$ and structure functions $\sigma_U = \sigma_T+\epsilon\sigma_L, \sigma_{TT}$ and $\sigma_{LT}$, as functions of $t$ were obtained over a wide range of $Q^2$ and $x_B$. Read More


Solar neutrinos interact within double-beta decay (\BB) detectors and contribute to backgrounds for \BB\ experiments. Background contributions due to solar neutrino interactions with \BB\ nuclei of $^{82}$Se, $^{100}$Mo, and $^{150}$Nd are evaluated. They are shown to be significant for future high-sensitivity \BB\ experiments that may search for Majorana neutrino masses in the inverted-hierarchy mass region. Read More


Fully constrained bubble chamber data on the pp -> pi+ pn and pp -> pi+ d reactions are used to investigate the ratio of the counting rates for the two processes at low pn excitation energies. Whereas the ratio is in tolerable agreement with that found in a high resolution spectrometer experiment, the angular distribution in the final pn rest frame shows that the deviation from the predictions of final state interaction theory must originate primarily from higher partial waves in the pn system. These considerations might also be significant for the determination of the S-wave Lambda:p scattering length from data on the pp -> K+ Lambda p reaction. Read More


The results obtained by studying the background of neutrons produced by cosmic-ray muons in underground experimental facilities intended for rare-event searches and in surrounding rock are presented. The types of this rock may include granite, sedimentary rock, gypsum, and rock salt. Neutron production and transfer were simulated using the Geant4 and SHIELD transport codes. Read More


Organic liquid scintillators are used in a wide variety of applications in experimental nuclear and particle physics. Boron-loaded scintillators are particularly useful for detecting neutron captures, due to the high thermal neutron capture cross section of $^{10}$B. These scintillators are commonly used in neutron detectors, including the DarkSide-50 neutron veto, where the neutron may produce a signal when it scatters off protons in the scintillator or when it captures on $^{10}$B. Read More


Starting from IP-Glasma initial conditions, we investigate the effects of bulk pressure on thermal dilepton production at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC) energies. Though results of the thermal dilepton $v_2$ under the influence of both bulk and shear viscosity is presented for top RHIC energy, more emphasis is put on LHC energy where such a calculation is computed for the first time. The effects of the bulk pressure on thermal dilepton $v_2$ at the LHC are explored through bulk-induced modifications on the dilepton yield. Read More


Background: Formation of a fully equilibrated compound nucleus is a critical step in the heavy-ion fusion reaction mechanism but can be hindered by orders of magnitude by quasifission, a process in which the dinuclear system breaks apart prior to full equilibration. To provide a complete description of heavy-ion fusion it is important to characterize the quasifission process. In particular, the impact of changing the neutron-richness of the quasifission process is not well known. Read More


The results of the SERP-E-184 experiment at the U-70 accelerator (IHEP, Protvino) are presented. Interactions of the 70 GeV proton beam with C, Si and Pb targets were studied to detect decays of charmed $D^0$, $\overline D^0$, $D^+$, $D^-$ mesons and $\Lambda _c^+$ baryon near their production threshold. Measurements of lifetimes and masses are shown a good agreement with PDG data. Read More


We present NN potentials through five orders of chiral effective field theory ranging from leading order (LO) to next-to-next-to-next-to-next-to-leading order (N4LO). The construction is consistent in the sense that the same power counting scheme as well as the same cutoff procedures are applied in all orders. Moreover, the long-range parts of these potentials are fixed by the very accurate pi-N LECs as determined in the Roy-Steiner equations analysis by Hoferichter, Ruiz de Elvira and coworkers. Read More


Following the successful observation of single conversion electrons from $^{83m}$Kr using Cyclotron Radiation Emission Spectroscopy (CRES), Project 8 is now advancing its focus toward a tritium beta decay spectrum. A tritium spectrum will be an important next step toward a direct measurement of the neutrino mass for Project 8. Here we discuss recent progress on the development and commissioning of a new gas cell for use with tritium, and outline the primary goals of the experiment for the near future. Read More


The Project 8 collaboration seeks to measure the absolute neutrino mass scale by means of precision spectroscopy of the beta decay of tritium. Our technique, cyclotron radiation emission spectroscopy, measures the frequency of the radiation emitted by electrons produced by decays in an ambient magnetic field. Because the cyclotron frequency is inversely proportional to the electron's Lorentz factor, this is also a measurement of the electron's energy. Read More


The mass and decay width of the $\phi$ meson in cold nuclear matter are computed in an effective Lagrangian approach. The medium dependence of these properties are obtained by evaluating kaon-antikaon loop contributions to the $\phi$ self-energy, employing the medium-modified kaon masses, calculated using the quark-meson coupling model. The loop integral is regularized with a dipole form factor, and the sensitivity of the results to the choice of cutoff mass in the form factor is investigated. Read More


Despite the more than one order of magnitude difference between the measured dipole moments in $^{144}$Ba and $^{146}$Ba, the strength of the octupole correlations in $^{146}$Ba are found to be as strong as those in $^{144}$Ba with a similarly large value of $B(E3;3^- \rightarrow 0^+)$ determined as 48($^{+21}_{-29}$) W.u. The new results not only establish unambiguously the presence of a region of octupole deformation centered on these neutron-rich Ba isotopes, but also manifest the dependence of the electric dipole moments on the occupancy of different neutron orbitals in nuclei with enhanced octupole strength, as revealed by fully microscopic calculations. Read More


Recent data on the deutron and $^3$He production in central Pb+Pb collisions at the CERN Super Proton Synchrotron (SPS) energies measured by the NA49 collaboration are analyzed within the model of the three-fluid dynamics (3FD) complemented by the coalescence model for the light-fragment production. The simulations are performed with different equations of state---with and without deconfinement transition. It is found that scenarios with the deconfinement transition are preferable for reproduction rapidity distributions of deuterons and $^3$He, the corresponding results well agree with the experimental data. Read More


The kinetic freeze-out temperatures $T_0$ in nucleus-nucleus collisions at the Relativistic Heavy Ion Collider (RHIC) and Large Hadron Collider (LHC) energies are extracted by four methods: i) the Blast-Wave model with Boltzmann-Gibbs statistics (the BGBW model), ii) the Blast-Wave model with Tsallis statistics (the TBW model), iii) the Tsallis distribution with flow effect (the improved Tsallis distribution), and iv) the intercept in $T=T_0+am_0$ (the alternative method), where $m_0$ denotes the rest mass and $T$ denotes the effective temperature which can be obtained by different distribution functions. It is found that the values of $T_0$ obtained by the four methods are incongruous in some cases. In particular, the relative sizes of $T_0$ in central and peripheral collisions obtained by the the first method with the traditional treatment are contradictory in tendency with others. Read More


A continuum approach to the kaon and pion bound-state problems is used to reveal their electromagnetic structure. For both systems, when used with parton distribution amplitudes appropriate to the scale of the experiment, Standard Model hard-scattering formulae are accurate to within 25% at momentum transfers $Q^2 \approx 8\,$GeV$^2$. There are measurable differences between the distribution of strange and normal matter within the kaons, e. Read More