Cosmology and Nongalactic Astrophysics Publications (50)

Search

Cosmology and Nongalactic Astrophysics Publications

We report on the detection at $>$98% confidence of an optical counterpart to AGC 249525, an Ultra-Compact High Velocity Cloud (UCHVC) discovered by the ALFALFA blind neutral hydrogen survey. UCHVCs are compact, isolated HI clouds with properties consistent with their being nearby low-mass galaxies, but without identified counterparts in extant optical surveys. Analysis of the resolved stellar sources in deep $g$- and $i$-band imaging from the WIYN pODI camera reveals a clustering of possible Red Giant Branch stars associated with AGC 249525 at a distance of 1. Read More


In the early sixties Leonard Parker discovered that the expansion of the universe can create particles out of the vacuum, opening a new and fruitfull field in physics. We give a historical review in the form of an interview that took place during the Conference ERE2014 (Valencia 1-5, September, 2014). Read More


A continuously rotating half-wave plate (CRHWP) is a promising tool to improve the sensitivity to large angular scales in cosmic microwave background (CMB) polarization measurements. With a CRHWP, single detectors can measure all three of the Stokes parameters, $I$, $Q$ and $U$, thereby avoiding the set of systematic errors that can be introduced by mismatches in the properties of orthogonal detector pairs. We focus on the implementation of CRHWPs in large aperture telescopes (i. Read More


We propose to use degree-scale angular clustering of fast radio bursts (FRBs) to identify their origin and the host galaxy population. We study the information content in auto-correlation of the angular positions and dispersion measures (DM) and in cross-correlation with galaxies. We show that the cross-correlation with Sloan Digital Sky Survey (SDSS) galaxies will place stringent constraints on the mean physical quantities associated with FRBs. Read More


Linear perturbations of the wave dark matter, or $\psi$ dark matter ($\psi$DM), of particle mass $\sim 10^{-22}$eV in the radiation-dominant era are analyzed, and the matter power spectrum at the photon-matter equality is obtained. We identify four phases of evolution for $\psi$DM perturbations, where the dynamics can be vastly different from the counterparts of cold dark matter (CDM). While in late stages after mass oscillation long-wave $\psi$DM perturbations are almost identical to CDM perturbations, some subtle differences remain, let alone intermediate-to-short waves that bear no resemblance with those of CDM throughout the whole evolutionary history. Read More


In arXiv:1601.02203, a simple model has been proposed in order to solve one of the problems related with the cosmological constant. The model is given by a topological field theory and the model has an infinite numbers of the BRS symmetries. Read More


It is analyzed the effects of both bulk and shear viscosities on the perturbations, relevant for structure formation in late time cosmology. It is shown that shear viscosity can be as effective as the bulk viscosity on suppressing the growth of perturbations and delaying the nonlinear regime. A statistical analysis of the shear and bulk viscous effects is performed and some constraints on these viscous effects are given. Read More


The E and B Experiment (EBEX) was a long-duration balloon-borne instrument designed to measure the polarization of the cosmic microwave background (CMB) radiation. EBEX was the first balloon-borne instrument to implement a kilo-pixel array of transition edge sensor (TES) bolometric detectors and the first CMB experiment to use the digital version of the frequency domain multiplexing system for readout of the TES array. The scan strategy relied on 40 s peak-to-peak constant velocity azimuthal scans. Read More


Massive black-hole binaries, formed when galaxies merge, are among the primary sources of gravitational waves targeted by ongoing Pulsar Timing Array (PTA) experiments and the upcoming space-based LISA interferometer. However, their formation and merger rates are still highly uncertain. Recent upper limits on the stochastic gravitational-wave background obtained by PTAs are starting being in marginal tension with theoretical models for the pairing and orbital evolution of these systems. Read More


We characterized the population of galaxy clusters detected with the SZ effect with Planck, by measuring the cool core state of the objects in a well-defined subsample of the Planck catalogue. We used as indicator the concentration parameter Santos et al. (2008). Read More


We consider cosmological evolution from the perspective of quantum information. We present a quantum circuit model for the expansion of a comoving region of space, in which initially-unentangled ancilla qubits become entangled as expansion proceeds. We apply this model to the comoving region that now coincides with our Hubble volume, taking the number of entangled degrees of freedom in this region to be proportional to the de Sitter entropy. Read More


An important indicator of modified gravity is the effect of the local environment on halo properties. This paper examines the influence of the local tidal structure on the halo mass function, the halo orientation, spin and the concentration-mass relation. We generalise the excursion set formalism to produce a halo mass function conditional on large-scale structure. Read More


We investigate the evolution of cosmic web since $z=5$ in grid based cosmological hydrodynamical simulations, focusing on the mass and velocity field of both baryonic and cold dark matter. The tidal tensor of density is used as the main method for web identification, with $\lambda_{th}=0.2-1. Read More


Spatial averaging and time evolving are non-commutative operations in General Relativity, which questions the reliability of the FLRW model. The long standing issue of the importance of backreactions induced by cosmic inhomogeneities is addressed for a toy model assuming a peak in the primordial spectrum of density perturbations and a simple CDM cosmology. The backreactions of initial Hubble-size inhomogeneities are determined in a fully relativistic framework, from a series of simulations using the BSSN formalism of numerical relativity. Read More


We show that three-dimensional information is critical to discerning the effects of parity violation in the primordial gravity-wave background. Helical gravity waves would induce parity-violating correlations in the cosmic microwave background (CMB) between parity-odd polarization $B$-modes and parity-even temperature anisotropies ($T$) or polarization $E$-modes. Unfortunately, $EB$ correlations are much weaker than would be naively expected, which we show is due to an approximate symmetry resulting from the two-dimensional nature of the CMB. Read More


We investigate the impact of general conditions of theoretical stability and cosmological viability on dynamical dark energy models. As a powerful example, we study whether minimally coupled, single field Quintessence models that are safe from ghost instabilities, can source the CPL expansion history recently shown to be mildly favored by a combination of CMB (Planck) and Weak Lensing (KiDS) data. Interestingly we find that in their most conservative form, the theoretical conditions impact the analysis in such a way that smooth single field Quintessence becomes significantly disfavored with respect to the standard $\Lambda$CDM cosmological model. Read More


We combine current measurements of the local expansion rate, $H_0$, and Big Bang Nucleosynthesis (BBN) estimates of helium abundance with the latest cosmic microwave background (CMB) data from the Planck Collaboration to discuss the observational viability of the scale invariant Harrison-Zeldovch-Peebles (HZP) spectrum. We also analyze some of its extensions, namely, HZP + $Y_P$ and HZP + $N_{eff}$, where $Y_P$ is the primordial helium mass fraction and $N_{eff}$ is the effective number of relativistic degrees of freedom. We perform a Bayesian analysis and show that the latter model is favored with respect to the standard cosmology for values of $N_{eff}$ lying in the interval $3. Read More


We consider four-dimensional gravity coupled to a non-linear sigma model whose scalar manifold is a geometrically finite hyperbolic surface $\Sigma$, which may be non-compact and may have finite or infinite area. When the space-time is an FLRW universe, such theories produce a very wide generalization of two-field $\alpha$-attractor models, being parameterized by a positive constant $\alpha$, by the choice of a finitely-generated surface group $\Gamma\subset \mathrm{PSL}(2,\mathbb{R})$ (which is isomorphic with the fundamental group of $\Sigma$) and by the choice of a scalar potential defined on $\Sigma$. The traditional $\alpha$-attractor models arise when $\Gamma$ is the trivial group, in which case $\Sigma$ is the Poincar\'{e} disk. Read More


We construct an integral equation for the first crossing distributions for fractional Brownian motion in the case of a constant barrier and we present an exact analytical solution. Additionally we present first crossing distributions derived by simulating paths from fractional Brownian motion. We compare the results of the analytical solutions with both those of simulations and those of some approximated solutions which have been used in the literature. Read More


We consider the reionization process in a cosmological model in which dark matter interacts with dark energy. Using a semi-analytical reionization model, we compute the evolution of the ionized fraction in terms of its spatial average and linear perturbations. We show that certain types of interactions between dark matter and dark energy can significantly affect the reionization history. Read More


Primordial black holes (PBH) could account for variety of phenomena like dark matter, reionization of the Universe, early quasars, coalescence of black holes registered through gravitational waves recently. Each phenomenon relates to PBH of a specific mass range. PBH mass spectra varies in a wide range depending on specific model. Read More


A large fraction of active galactic nuclei (AGN) are "invisible" in extant optical surveys due to either distance or dust-obscuration. The existence of this large population of dust-obscured, infrared-bright AGN is predicted by models of galaxy - supermassive black hole coevolution and is required to explain the observed X-ray and infrared backgrounds. Recently, infrared colour-cuts with WISE have identified a portion of this missing population. Read More


2017Feb
Affiliations: 1Caltech, 2Davis, 3UCSD, 4Northwestern, 5Berkeley, 6Austin, 7CITA, 8Flatiron, 9Caltech, 10Caltech, 11Zurich, 12MIT, 13Caltech, 14Northwestern, 15Caltech, 16Caltech, 17Caltech, 18Caltech, 19Caltech, 20Caltech, 21Northwestern, 22Stanford, 23Austin, 24Irvine, 25Caltech, 26UCSD, 27Irvine, 28Florida

The Feedback In Realistic Environments (FIRE) project explores the role of feedback in cosmological simulations of galaxy formation. Previous FIRE simulations used an identical source code (FIRE-1) for consistency. Now, motivated by the development of more accurate numerics (hydrodynamic solvers, gravitational softening, supernova coupling) and the exploration of new physics (e. Read More


In two recent arXiv postings, Maji et al. argue against the existence of a spatially thin, kinematically coherent Disk of Satellites (DoS) around the Milky Way (MW), and suggest that the DoS is "maybe a misinterpretation of the data". These claims are in stark contrast to previous works, and indeed we show that the conclusions of Maji et al. Read More


We use adaptive-mesh magnetohydrodynamic simulations to study the effect of magnetic fields on ram pressure stripping of galaxies in the intracluster medium (ICM). Although the magnetic pressure in typical clusters is not strong enough to affect the gas mass loss rate from galaxies, magnetic fields can affect the morphology of stripped galaxies. ICM magnetic fields are draped around orbiting galaxies and aligned with their stripped tails. Read More


Assuming the existence of a local, analytic, unitary UV completion in a Poincar\'{e} invariant scalar field theory with a mass gap, we derive an infinite number of positivity requirements using the known properties of the amplitude at and away from the forward scattering limit. These take the form of bounds on combinations of the pole subtracted scattering amplitude and its derivatives. In turn, these positivity requirements act as constraints on the operator coefficients in the low energy effective theory. Read More


Many physical theories beyond the Standard Model predict time variations of basic physics parameters. Direct measurement of the time variations of these parameters is very difficult or impossible to achieve. By contrast, measurements of fundamental constants are relatively easy to achieve, both in the laboratory and by astronomical spectra of atoms and molecules in the early universe. Read More


Motivated by the stellar fossil record of Local Group (LG) dwarf galaxies, we show that the star-forming ancestors of the faintest ultra-faint dwarf galaxies (UFDs; ${\rm M}_{\rm V}$ $\sim -2$ or ${\rm M}_{\star}$ $\sim 10^{2}$ at $z=0$) had ultra-violet (UV) luminosities of ${\rm M}_{\rm UV}$ $\sim -3$ to $-6$ during reionization ($z\sim6-10$). The existence of such faint galaxies has substantial implications for early epochs of galaxy formation and reionization. If the faint-end slopes of the UV luminosity functions (UVLFs) during reionization are steep ($\alpha\lesssim-2$) to ${\rm M}_{\rm UV}$ $\sim -3$, then: (i) the ancestors of UFDs produced $>50$% of UV flux from galaxies; (ii) galaxies can maintain reionization with escape fractions that are $>$2 times lower than currently-adopted values; (iii) direct HST and JWST observations may detect only $\sim10-50$% of the UV light from galaxies; (iv) the cosmic star formation history increases by $\gtrsim4-6$ at $z\gtrsim6$. Read More


We analyse a simple extension of the SM with just an additional scalar singlet coupled to the Higgs boson. We discuss the possible probes for electroweak baryogenesis in this model including collider searches, gravitational wave and direct dark matter detection signals. We show that a large portion of the model parameter space exists where the observation of gravitational waves would allow detection while the indirect collider searches would not. Read More


Since the beginning of the new millennium, more than 100 $z\sim 6$ quasars have been discovered through several surveys and followed-up with multi-wavelength observations. These data provided a large amount of information on the growth of supermassive black holes at the early epochs, the properties of quasar host galaxies and the joint formation and evolution of these massive systems. We review the properties of the highest-$z$ quasars known so far, especially focusing on some of the most recent results obtained in (sub-)millimeter bands. Read More


We demonstrate that in some regions of parameter space, modified dispersion relations can lead to highly populated excited states, which we dub as "super-excited" states. In order to prepare such super-excited states, we invoke dispersion relations that have negative slope in an interim sub-horizon phase at high momenta. This behaviour of quantum fluctuations can lead to large corrections relative to the Bunch-Davies power spectrum, which mimics highly excited initial conditions. Read More


We study the amplification of the electromagnetic fluctuations, and the production of "seeds" for the cosmic magnetic fields, in a class of string cosmology models whose scalar and tensor perturbations reproduce current observations and satisfy known phenomenological constraints. We find that the condition of efficient seeds production can be satisfied and compatible with all constraints only in a restricted region of parameter space, but we show that such a region has significant intersections with the portions of parameter space where the produced background of relic gravitational waves is strong enough to be detectable by aLIGO/Virgo and/or by eLISA. Read More


String scenarios generically predict that we live in a so called axiverse: the Universe with about a hundred of light axion species which are decoupled from the Standard Model particles. However, the axions can couple to the inflaton which leads to their production after inflation. Then, these axions remain in the expanding Universe contributing to the dark radiation component, which is severely bounded from present cosmological data. Read More


Previously proposed class of phenomenological inflationary models in which the assumption of inflaton slow-roll is replaced by the more general, constant-roll condition is compared with the most recent cosmological observational data, mainly the Planck ones. Models in this two-parametric class which remain viable appear to be close to the slow-roll ones, and their inflaton potentials are close (but still different) to that of the natural inflation model. Permitted regions for the two model parameters are presented. Read More


We analyze the finite-time singularity types using a generic framework of the phase portrait geometric approach. This technique requires that the Friedmann system to be written as a one dimensional autonomous system. We exhibit a scale factor that can realize the four singularity types, then we show a detailed discussion for each case. Read More


We consider the hypothesis that the dark matter consists of ultra-light bosons residing in the state of a Bose-Einstein condensate, which behaves as a single coherent wave rather than as individual particles. In galaxies, spatial distribution of scalar field dark matter can be described by the relativistic Klein-Gordon equation on a background space-time with Schwarzschild metric. In such a setup, the equation of state of scalar field dark matter is found to be changing along with galactocentric distance from dust-like ($p=0$), inside the galactic halo, to vacuum-like ($p=-\rho$), in intergalactic space. Read More


We use dimensional regularization in pure quantum gravity on de Sitter background to evaluate the one loop expectation value of an invariant operator which gives the local expansion rate. We show that the renormalization of this nonlocal composite operator can be accomplished using the counterterms of a simple local theory of gravity plus matter, at least at one loop order. This renormalization completely absorbs the one loop correction, which accords with the prediction that the lowest secular back-reaction should be a 2-loop effect. Read More


The SkyMapper 1.3 m telescope at Siding Spring Observatory has now begun regular operations. Alongside the Southern Sky Survey, a comprehensive digital survey of the entire southern sky, SkyMapper will carry out a search for supernovae and other transients. Read More


We present independent measurements of the masses of the galaxy clusters in the local universe by employing the Dynamical Mass Estimator (DME) originally developed by Falco et al in 2014. In the catalog of the galaxy groups/clusters constructed by Tempel et al. from the Sloan Digital Sky Survey Data Release 10, we search for those as the targets around which the neighbor galaxies constitute thin straight filamentary structures in the configuration space spanned by the redshifts and the projected distances. Read More


We discuss the production and evolution of cosmological gravitons showing how the cosmological background affects their dynamics. Besides, the detection of cosmological gravitons could constitute an extremely important signature to discriminate among different cosmological models. Here we consider the cases of scalar-tensor gravity and $f(R)$ gravity where it is demonstrated the amplification of graviton amplitude changes if compared with General Relativity. Read More


Recently it was shown that dark matter with mass of order the weak scale can be charged under a new long-range force, decoupled from the Standard Model, with only weak constraints from early Universe cosmology. Here we consider the implications of an additional charged particle $C$ that is light enough to lead to significant dissipative dynamics on galactic times scales. We highlight several novel features of this model, which can be relevant even when the $C$ particle constitutes only a small fraction of the number density (and energy density). Read More


We have been spectroscopically monitoring 88 quasars selected to have broad H$\beta$ emission lines offset from their systemic redshift by thousands of km s$^{-1}$. By analogy with single-lined spectroscopic binary stars, we consider these quasars to be candidates for hosting supermassive black hole binaries (SBHBs). In this work we present new radial velocity measurements, typically 3-4 per object over a time period of up to 12 years in the observer's frame. Read More


We compute the spherical-sky weak-lensing power spectrum of the shear and convergence. We discuss various approximations, such as flat-sky, and first- and second- order Limber equations for the projection. We find that the impact of adopting these approximations are negligible when constraining cosmological parameters from current weak lensing surveys. Read More


2017Feb
Affiliations: 1INAF-Trieste, 2Excellence Cluster Universe, Munich, 3LMU, Munich, 4Bonn University, 5MPE, Munich, 6ESO, Munich, 7Trieste University

Determination of cluster masses is a fundamental tool for cosmology. Comparing mass estimates obtained by different probes allows to understand possible systematic uncertainties. The cluster Abell 315 is an interesting test case, since it has been claimed to be underluminous in X-ray for its mass (determined via kinematics and weak lensing). Read More


Recent analysis of the rotation curves of a large sample of galaxies with very diverse stellar properties reveal a relation between the radial acceleration purely due to the baryonic matter and the one inferred directly from the observed rotation curves. Assuming the dark matter (DM) exists, this acceleration relation is tantamount to an acceleration relation between DM and baryons. This leads us to a universal maximum acceleration for all halos. Read More


We present the results of a Chandra X-ray survey of the 8 most massive galaxy clusters at z>1.2 in the South Pole Telescope 2500 deg^2 survey. We combine this sample with previously-published Chandra observations of 49 massive X-ray-selected clusters at 0Read More


Since galaxy clusters sit at the high-end of the mass function, the number of galaxy clusters both massive and concentrated enough to yield particularly large Einstein radii poses useful constraints on cosmological and structure formation models. To date, less than a handful of clusters are known to have Einstein radii exceeding $\sim40$" (for a source at $z_{s}\simeq2$, nominally). Here, we report an addition to that list of the Sunyaev-Zel'dovich (SZ) selected cluster, PLCK G287. Read More


Galaxy clustering data from current and upcoming large scale structure surveys can provide strong constraints on primordial non-Gaussianity through the scale-dependent halo bias. To fully exploit the information from galaxy surveys, optimal analysis methods need to be developed and applied to the data. Since the halo bias is sensitive to local non-Gaussianity predominately at large scales, the volume of a given survey is crucial. Read More


We present a search for the synchrotron emission from the synchrotron cosmic web by cross correlating 180MHz radio images from the Murchison Widefield Array with tracers of large scale structure (LSS). We use two versions of the radio image covering $21.76\times 21. Read More