Cosmology and Nongalactic Astrophysics Publications (50)


Cosmology and Nongalactic Astrophysics Publications

Characterizing the diffuse Galactic synchrotron emission at arcminute angular scales is needed to reliably remove foregrounds in cosmological 21-cm measurements. The study of this emission is also interesting in its own right. Here, we quantify the fluctuations of the diffuse Galactic synchrotron emission using visibility data for two of the fields observed by the TIFR GMRT Sky Survey (TGSS). Read More

We present a unified description of the dark matter and the dark energy sectors, in the framework of shift-symmetric generalized Galileon theories. Considering a particular combination of terms in the Horndesdi Lagrangian in which we have not introduced a cosmological constant or a matter sector, we obtain an effective unified cosmic fluid whose equation of state $w_U$ is zero during the whole matter era, namely from redshifts $z\sim3000$ up to $z\sim2-3$. Then at smaller redshifts it starts decreasing, passing the bound $w_U=-1/3$, which marks the onset of acceleration, at around $z\sim0. Read More

Relying on multifractal behavior of pulsar timing residuals ({\it PTR}s), we examine the capability of Multifractal Detrended Fluctuation Analysis (MF-DFA) and Multifractal Detrending Moving Average Analysis (MF-DMA) modified by Singular Value Decomposition (SVD) and Adaptive Detrending (AD), to detect footprint of gravitational waves (GWs) superimposed on {\it PTR}s. Mentioned methods enable us to clarify the type of GWs which is related to the value of Hurst exponent. We introduce three strategies based on generalized Hurst exponent and width of singularity spectrum, to determine the dimensionless amplitude of GWs. Read More

By using the relations between the slow-roll parameters and the power spectrum for the single field slow-roll inflation, we derive the scalar spectral tilt $n_s$ and the tensor to scalar ratio $r$ for the constant slow-roll inflation and obtain the constraint on the slow-roll parameter $\eta$ from the Planck 2015 results. The inflationary potential for the constant slow-roll inflation is then reconstructed in the framework of both general relativity and scalar-tensor theory of gravity, and compared with the recently reconstructed E model potential. In the strong coupling limit, we show that the $\eta$ attractor is reached. Read More

A superbubble which advances in a symmetric Navarro--Frenk--White density profile or in an auto-gravitating density profile generates a thick shell with a radius that can reach 10 kpc. The application of the symmetric and asymmetric image theory to this thick 3D shell produces a ring in the 2D map of intensity and a characteristic `U' shape in the case of 1D cut of the intensity. A comparison of such a ring originating from a superbubble is made with the Einstein's ring. Read More

The early reionization (ERE) is supposed to be a physical process which happens after recombination, but before the instantaneous reionization caused by the first generation of stars. We investigate the effect of the ERE on the temperature and polarization power spectra of cosmic microwave background (CMB), and adopt principal components analysis (PCA) to model-independently reconstruct the ionization history during the ERE. In addition, we also discuss how the ERE affects the cosmological parameter estimates, and find that the ERE does not impose any significant influences on the tensor-to-scalar ratio $r$ and the neutrino mass at the sensitivities of current experiments. Read More

The distribution of diffuse gas in the intergalactic medium (IGM) imprints a series of hydrogen absorption lines on the spectra of distant background quasars known as the Lyman-$\alpha$ forest. Cosmological hydrodynamical simulations predict that IGM density fluctuations are suppressed below a characteristic scale where thermal pressure balances gravity. We measured this pressure-smoothing scale by quantifying absorption correlations in a sample of close quasar pairs. Read More

We study the likelihood which relative minima of random polynomial potentials support the slow-roll conditions for inflation. Consistent with renormalizability and boundedness, the coefficients that appear in the potential are chosen to be order one with respect to the energy scale at which inflation transpires. Investigation of the single field case illustrates a window in which the potentials satisfy the slow-roll conditions. Read More

The answer is Yes! We indeed find that interacting dark energy can alleviate the current tension on the value of the Hubble constant $H_0$ between the Cosmic Microwave Background anisotropies constraints obtained from the Planck satellite and the recent direct measurements reported by Riess et al. 2016. The combination of these two datasets points towards an evidence for a non-zero dark matter-dark energy coupling $\xi$ at more than two standard deviations, with $\xi=-0. Read More

Affiliations: 1I. Kant Baltic Federal University, 2Cape Town U., Dept. Math. & Cape Town U., Cosmology & Gravity group, 3ICREA and IEEC-CSIC

In the context of f(R)=R + alpha R^2 gravity, we study the existence of neutron and quark stars with no intermediate approximations in the generalised system of Tolman-Oppenheimer-Volkov equations. Analysis shows that for positive alpha's the scalar curvature does not drop to zero at the star surface (as in General Relativity) but exponentially decreases with distance. Also the stellar mass bounded by star surface decreases when the value alpha increases. Read More

We introduce a new Bayesian HI spectral line fitting technique capable of obtaining spectroscopic redshifts for millions of galaxies in radio surveys with the Square Kilometere Array (SKA). This technique is especially well-suited to the low signal-to-noise regime that the redshifted 21-cm HI emission line is expected to be observed in, especially with SKA Phase 1, allowing for robust source detection. After selecting a set of continuum objects relevant to large, cosmological-scale surveys with the first phase of the SKA dish array (SKA1-MID), we simulate data corresponding to their HI line emission as observed by the same telescope. Read More

We present $Suzaku$ off-center observations of two poor galaxy groups, NGC 3402 and NGC 5129, with temperatures below 1 keV. Through spectral decomposition, we measure their surface brightnesses and temperatures out to 330 and 680 times the critical density of the universe for NGC 3402 and NGC 5129, respectively. These quantities are consistent with extrapolations from existing inner measurements of the two groups. Read More

We quantify the gas-phase abundance of deuterium in cosmological zoom-in simulations from the Feedback In Realistic Environments project. The cosmic deuterium fraction decreases with time, because mass lost from stars is deuterium-free. At low metallicity, our simulations confirm that the deuterium abundance is very close to the primordial value. Read More

We propose a new thermal freeze-out mechanism for ultra-heavy dark matter. Dark matter coannihilates with a lighter unstable species, leading to an annihilation rate that is exponentially enhanced relative to standard WIMPs. This scenario destabilizes any potential dark matter candidate. Read More

Gravitational lensing of the CMB is a valuable cosmological signal that correlates to tracers of large-scale structure and acts as a important source of confusion for primordial $B$-mode polarization. State-of-the-art lensing reconstruction analyses use quadratic estimators, which are easily applicable to data. However, these estimators are known to be suboptimal, in particular for polarization, and large improvements are expected to be possible for high signal-to-noise polarization experiments. Read More

The previously introduced class of two-parametric phenomenological inflationary models in General Relativity in which the slow-roll assumption is replaced by the more general, constant-roll condition is generalized to the case of $f(R)$ gravity. The simple constant-roll condition is defined in the original, Jordan frame, and exact expressions for the scalaron potential in the Einstein frame, for the function $f(R)$ (in the parametric form) and for inflationary dynamics are obtained. The region of the model parameters permitted by the latest observational constraints on the scalar spectral index and the tensor-to-scalar ratio of primordial metric perturbations generated during inflation is determined. Read More

The standard cosmographic approach consists in performing a series expansion of a cosmological observable around $z=0$ and then using the data to constrain the cosmographic (or kinematic) parameters at present time. Such a procedure works well if applied to redshift ranges inside the $z$-series convergence radius ($z<1$), but can be problematic if we want to cover redshift intervals that fall outside the $z-$series convergence radius. This problem can be circumvented if we work with the $y-$redshift, $y=z/(1+z)$, or the scale factor, $a=1/(1+z)=1-y$, for example. Read More

Graviton fluctuations induce strong non-perturbative infrared renormalization effects for the cosmological constant. In flat space the functional renormalization flow drives a positive cosmological constant to zero. We propose a simple computation of the graviton contribution to the flow of the effective potential for scalar fields. Read More

The recent Madala hypothesis, a conjecture that seeks to explain anomalies within Large Hadron Collider (LHC) data (particularly in the transverse momentum of the Higgs boson), is interesting for more than just a statistical hint at unknown and unpredicted physics. This is because the model itself contains additional new particles that may serve as Dark Matter (DM) candidates. These particles interact with the Standard Model via a scalar mediator boson $S$. Read More

Dark Matter (DM) remains a vital, but elusive, component in our current understanding of the universe. Accordingly, many experimental searches are devoted to uncovering its nature. However, both the existing direct detection methods, and the prominent $\gamma$-ray search with the Fermi Large Area Telescope (Fermi-LAT), are most sensitive to DM particles with masses below 1 TeV, and are significantly less sensitive to the hard spectra produced in annihilation via heavy leptons. Read More

In this paper, we investigate the first and second order cosmological perturbations in the light mass Galileon (LMG) scenario. LMG action includes cubic Galileon term along with the standard kinetic term and a potential which is added phenomenologically to achieve late time acceleration. The scalar field is nonminimally coupled to matter in the Einstein frame. Read More

We measure the Planck cluster mass bias using dynamical mass measurements based on velocity dispersions of a subsample of 17 Planck-detected clusters. The velocity dispersions were calculated using redshifts determined from spectra obtained at Gemini observatory with the GMOS multi-object spectrograph. We correct our estimates for effects due to finite aperture, Eddington bias and correlated scatter between velocity dispersion and the Planck mass proxy. Read More

Structure formation at small cosmological scales provides an important frontier for dark matter (DM) research. Scenarios with small DM particle masses, large momenta or hidden interactions tend to suppress the gravitational clustering at small scales. The details of this suppression depend on the DM particle nature, allowing for a direct link between DM models and astrophysical observations. Read More

Affiliations: 1Universitat de Barcelona, 2Universitat de Barcelona, 3Center for Computational Astrophysics

The relation between the halo field and the matter fluctuations (halo bias), in the presence of massive neutrinos depends on the total neutrino mass, massive neutrinos introduce an additional scale-dependence of the bias which is usually neglected in cosmological analyses. We investigate the magnitude of the systematic effect on interesting cosmological parameters induced by neglecting this scale dependence, finding that while it is not a problem for current surveys, it is non-negligible for future, denser or deeper ones depending on the neutrino mass, the maximum scale used for the analyses and the details of the nuisance parameters considered. However there is a simple recipe to account for the bulk of the effect as to make it fully negligible, which we illustrate and advocate should be included in analysis of forthcoming large-scale structure surveys. Read More

Supernova cosmology without spectra will be the bread and butter mode for future surveys such as LSST. This lack of supernova spectra results in uncertainty in the redshifts which, if ignored, leads to significantly biased estimates of cosmological parameters. Here we present a hierarchical Bayesian formalism -- zBEAMS -- that fully addresses this problem by marginalising over the unknown or contaminated supernova redshifts to produce unbiased cosmological estimates that are competitive with entirely spectroscopic data. Read More

We extend previous studies of big bang nucleosynthesis, with the assumption that ordinary matter and dark matter sectors are entangled through the number of degrees of freedom entering the Friedmann equations. This conjecture allows us to find a relation between the temperatures of the weakly interacting matter and dark-matter sectors. The constraints imposed by observations are studied by comparison with calculations of big bang nucleosynthesis for the abundance of light elements. Read More

We analyze three-dimensional hydrodynamical simulations of the interaction of jets and the bubbles they inflate with the intra-cluster medium (ICM), and show that the heating of the ICM by mixing hot bubble gas with the ICM operates over tens of millions of years, and hence can smooth the sporadic activity of the jets. The inflation process of hot bubbles by propagating jets forms many vortices, and these vortices mix the hot bubble gas with the ICM. The mixing, hence the heating of the ICM, starts immediately after the jets are launched, but continues for tens of millions of years. Read More

We present a statistical study on the [C I]($^{3} \rm P_{1} \rightarrow {\rm ^3 P}_{0}$), [C I] ($^{3} \rm P_{2} \rightarrow {\rm ^3 P}_{1}$) lines (hereafter [C I] (1$-$0) and [C I] (2$-$1), respectively) and the CO (1$-$0) line for a sample of (ultra)luminous infrared galaxies [(U)LIRGs]. We explore the correlations between the luminosities of CO (1$-$0) and [C I] lines, and find that $L'_\mathrm{CO(1-0)}$ correlates almost linearly with both $L'_ \mathrm{[CI](1-0)}$ and $L'_\mathrm{[CI](2-1)}$, suggesting that [C I] lines can trace total molecular gas mass at least for (U)LIRGs. We also investigate the dependence of $L'_\mathrm{[CI](1-0)}$/$L'_\mathrm{CO(1-0)}$, $L'_\mathrm{[CI](2-1)}$/$L'_\mathrm{CO(1-0)}$ and $L'_\mathrm{[CI](2-1)}$/$L'_\mathrm{[CI](1-0)}$ on the far-infrared color of 60-to-100 $\mu$m, and find non-correlation, a weak correlation and a modest correlation, respectively. Read More

We reinvestigate a claimed sample of 22 X-ray detected active galactic nuclei (AGN) at redshifts z > 4, which has reignited the debate as to whether young galaxies or AGN reionized the Universe. These sources lie within the GOODS-S/CANDELS field, and we examine both the robustness of the claimed X-ray detections (within the Chandra 4Ms imaging) and perform an independent analysis of the photometric redshifts of the optical/infrared counterparts. We confirm the reality of only 15 of the 22 reported X-ray detections, and moreover find that only 12 of the 22 optical/infrared counterpart galaxies actually lie robustly at z > 4. Read More

Hamiltonian systems such as the gravitational N-body problem have time-reversal symmetry. However, all numerical N-body integration schemes, including symplectic ones, respect this property only approximately. In this paper, we present the new N-body integrator JANUS, for which we achieve exact time-reversal symmetry by combining integer and floating point arithmetic. Read More

We present a new catalog of narrow-line Seyfert 1 (NLSy1) galaxies from the Sloan Digital Sky Survey Data Release 12 (SDSS DR12). This was obtained by a systematic analysis through modeling of the continuum and emission lines of the spectra of all the 68,859 SDSS DR12 objects that are classified as "QSO" by the SDSS spectroscopic pipeline with z < 0.8 and a median signal-to-noise ratio (S/N) > 2 per pixel. Read More

We perform a dynamical system analysis of a cosmological model with linear dependence between the vacuum density and the Hubble parameter, with constant-rate creation of dark matter. We show that the de Sitter spacetime is an asymptotically stable critical point, future limit of any expanding solution. Our analysis also shows that the Minkowski spacetime is an unstable critical point, which inevitably collapses to a singularity. Read More

In this paper, we consider the singular isothermal sphere lensing model that have a spherically symmetric power-law mass distribution $\rho_{tot}(r)\sim r^{-\gamma}$. We investigate whether the mass density power-law index $\gamma$ is cosmologically evolutionary by using the strong gravitational lensing (SGL) observation, in combination with other cosmological observations. We also check whether the constraint result of $\gamma$ is affected by the cosmological model, by considering several simple dynamical dark energy models. Read More

A specific value for the cosmological constant, \Lambda, can account for late-time cosmic acceleration. However, motivated by the so-called cosmological constant problem(s), several alternative mechanisms have been explored. To date, a host of well-studied dynamical dark energy and modified gravity models exists. Read More

We present a new mechanism to produce the dark photon ($\gamma'$) in the early universe with a help of the axion ($a$) using a recently proposed dark axion portal. The dark photon, a light gauge boson in the dark sector, can be a relic dark matter if its lifetime is long enough. The main process we consider is a variant of the Primakoff process $f a \to f \gamma'$ mediated by a photon, which is possible with the axion--photon--dark photon coupling. Read More

Considering gravitational waves propagating on the most general 4+N-dimensional space-time, we investigate the effects due to the N extra dimensions on the four-dimensional waves. All wave equations are derived in general and discussed. On Minkowski4 times an arbitrary Ricci-flat compact manifold, we find: a massless wave with an additional polarization, the breathing mode, and extra waves with high frequencies fixed by Kaluza-Klein masses. Read More

We study the dark matter phenomenology of non-minimal composite Higgs models with $SO(7)$ broken to the exceptional group $G_2$. In addition to the Higgs, three pseudo-Nambu-Goldstone bosons arise, one of which is electrically neutral. A parity symmetry is enough to ensure this resonance is stable. Read More

We present the correlation function of the luminosity distances in a flat $\Lambda$CDM universe. Decomposing the luminosity distance fluctuation into the velocity, the gravitational potential, and the lensing contributions, we study their individual contributions to the correlation function. The lensing contribution is important at large redshift ($z\gtrsim 0. Read More

We embed a flipped ${\rm SU}(5) \times {\rm U}(1)$ GUT model in a no-scale supergravity framework, and discuss its predictions for cosmic microwave background observables, which are similar to those of the Starobinsky model of inflation. Measurements of the tilt in the spectrum of scalar perturbations in the cosmic microwave background, $n_s$, constrain significantly the model parameters. We also discuss the model's predictions for neutrino masses, and pay particular attention to the behaviours of scalar fields during and after inflation, reheating and the GUT phase transition. Read More

The Extragalactic Background Light (EBL) captures the total integrated emission from stars and galaxies throughout the cosmic history. The amplitude of the near-infrared EBL from space absolute photometry observations has been controversial and depends strongly on the modeling and subtraction of the Zodiacal light foreground. We report the first measurement of the diffuse background spectrum at 0. Read More

As an extension of our previous work, which investigated the shadows of the Ellis wormhole surrounded by nonrotating dust, in this paper we study wormhole shadows in rotating dust flow. First, we derive steady-state solutions of slowly rotating dust surrounding the wormhole by solving relativistic Euler equations. Solving null geodesic equations and radiation transfer equations, we investigate the images of the wormhole surrounded by dust for the above steady-state solutions. Read More

After the first direct detection of gravitational waves (GW), detection of stochastic background of GWs is an important next step, and the first GW event suggests that it is within the reach of the second-generation ground-based GW detectors. Such a GW signal is typically tiny, and can be detected by cross-correlating the data from two spatially-separated detectors if the detector noise is uncorrelated. It has been advocated, however, that the global magnetic fields in the Earth-ionosphere cavity produce the environmental disturbances at low-frequency bands, known as Schumann resonances, which potentially couple with GW detectors. Read More

We propose a new method of detecting Ellis wormholes by use of the images of wormholes surrounded by optically thin dust. First, we derive steady solutions of dust and more general medium surrounding the wormhole by solving relativistic Euler equations. We find two types of dust solutions: one is a static solution with arbitrary density profile, and the other is a solution of dust which passes into the wormhole and escapes into the other side with constant velocity. Read More

Quasi-Normal Modes (QNM) or ringdown phase of gravitational waves provide critical information about the structure of compact objects like Black Holes. Thus, QNMs can be a tool to test General Relativity (GR) and possible deviations from it. In the case of GR, it is known for a long time that a relation between two types of Black Hole perturbations: scalar (Zerilli) and vector (Regge-Wheeler), leads to an equal share of emitted gravitational energy. Read More

We build a minimal extension of General Relativity in which Newton's gravitational coupling, $G$, the speed of light, $c$, and the cosmological constant, $\Lambda$, are spacetime variables. This is done while satisfying the contracted Bianchi identity as well as the local conservation of energy momentum tensor. A dynamical constraint is derived, which shows that variations of $G$ and $c$ are coupled to the local matter-energy physical content, while variation of $\Lambda$ is coupled to the local geometry. Read More

The range of currently proposed active galactic nucleus (AGN) far-infrared templates results in uncertainties in retrieving host galaxy information from infrared observations and also undermines constraints on the outer part of the AGN torus. We discuss how to test and reconcile these templates. Physically, the fraction of the intrinsic AGN IR-processed luminosity compared with that from the central engine should be consistent with the dust-covering factor. Read More

Like Scalar Galileons, Einstein-Hilbert action and the Lovelock extensions contain higher order derivatives in action, however their equations of motion are second order. We are lead to ask: Can there exist a corresponding action for spin-1 or electromagnetic fields? By demanding three conditions - theory be described by vector potential $A^\mu$ and its derivatives, Gauge invariance be satisfied, and equations of motion be linear in second derivatives of vector potential - we construct a higher derivative electromagnetic action which does not have ghosts and preserve gauge invariance. We show that the action breaks conformal invariance explicitly and leads to generation of magnetic field during inflation. Read More