Computer Science - Neural and Evolutionary Computing Publications (50)

Search

Computer Science - Neural and Evolutionary Computing Publications

The back-propagation (BP) algorithm has been considered the de facto method for training deep neural networks. It back-propagates errors from the output layer to the hidden layers in an exact manner using feedforward weights. In this work, we propose a more biologically plausible paradigm of neural architecture according to biological findings. Read More


We are proposing to use an ensemble of diverse specialists, where speciality is defined according to the confusion matrix. Indeed, we observed that for adversarial instances originating from a given class, labeling tend to be done into a small subset of (incorrect) classes. Therefore, we argue that an ensemble of specialists should be better able to identify and reject fooling instances, with a high entropy (i. Read More


Visual question answering (VQA) has witnessed great progress since May, 2015 as a classic problem unifying visual and textual data into a system. Many enlightening VQA works explore deep into the image and question encodings and fusing methods, of which attention is the most effective and infusive mechanism. Current attention based methods focus on adequate fusion of visual and textual features, but lack the attention to where people focus to ask questions about the image. Read More


Brains need to predict how our muscles and body react to motor commands. How networks of spiking neurons can learn to reproduce these non-linear dynamics, using local, online and stable learning rules, is an important, open question. Here, we present a supervised learning scheme for the feedforward and recurrent connections in a network of heterogeneous spiking neurons. Read More


Unsupervised learning allows algorithms to adapt to different data thanks to the autonomous discovery of discriminating features during the training. When these algorithms are reducible to cost-function minimisation, better interpretations of their learning dynamics are possible. Recently, new Hebbian-like plasticity, bio-inspired, local and unsupervised learning rules for neural networks, have been shown to minimise a cost-function while performing online sparse representation learning. Read More


Neuromorphic computing using post-CMOS technologies is gaining immense popularity due to its promising abilities to address the memory and power bottlenecks in von-Neumann computing systems. In this paper, we propose RESPARC - a reconfigurable and energy efficient architecture built-on Memristive Crossbar Arrays (MCA) for deep Spiking Neural Networks (SNNs). Prior works were primarily focused on device and circuit implementations of SNNs on crossbars. Read More


Reinforcement Learning algorithms can learn complex behavioral patterns for sequential decision making tasks wherein an agent interacts with an environment and acquires feedback in the form of rewards sampled from it. Traditionally, such algorithms make decisions, i.e. Read More


One of the long-standing challenges in Artificial Intelligence for goal-directed behavior is to build a single agent which can solve multiple tasks. Recent progress in multi-task learning for goal-directed sequential tasks has been in the form of distillation based learning wherein a single student network learns from multiple task-specific expert networks by mimicking the task-specific policies of the expert networks. While such approaches offer a promising solution to the multi-task learning problem, they require supervision from large task-specific (expert) networks which require extensive training. Read More


Polychronous neural groups are effective structures for the recognition of precise spike-timing patterns but the detection method is an inefficient multi-stage brute force process that works off-line on pre-recorded simulation data. This work presents a new model of polychronous patterns that can capture precise sequences of spikes directly in the neural simulation. In this scheme, each neuron is assigned a randomized code that is used to tag the post-synaptic neurons whenever a spike is transmitted. Read More


This paper focuses on the development of randomized approaches for building deep neural networks. A supervisory mechanism is proposed to constrain the random assignment of the hidden parameters (i.e. Read More


As humans we possess an intuitive ability for navigation which we master through years of practice; however existing approaches to model this trait for diverse tasks including monitoring pedestrian flow and detecting abnormal events have been limited by using a variety of hand-crafted features. Recent research in the area of deep-learning has demonstrated the power of learning features directly from the data; and related research in recurrent neural networks has shown exemplary results in sequence-to-sequence problems such as neural machine translation and neural image caption generation. Motivated by these approaches, we propose a novel method to predict the future motion of a pedestrian given a short history of their, and their neighbours, past behaviour. Read More


Scheduling surgeries is a challenging task due to the fundamental uncertainty of the clinical environment, as well as the risks and costs associated with under- and over-booking. We investigate neural regression algorithms to estimate the parameters of surgery case durations, focusing on the issue of heteroscedasticity. We seek to simultaneously estimate the duration of each surgery, as well as a surgery-specific notion of our uncertainty about its duration. Read More


Operational maturity of biological control systems have fuelled the inspiration for a large number of mathematical and logical models for control, automation and optimisation. The human brain represents the most sophisticated control architecture known to us and is a central motivation for several research attempts across various domains. In the present work, we introduce an algorithm for mathematical optimisation that derives its intuition from the hierarchical and distributed operations of the human motor system. Read More


The novel Unbiased Online Recurrent Optimization (UORO) algorithm allows for online learning of general recurrent computational graphs such as recurrent network models. It works in a streaming fashion and avoids backtracking through past activations and inputs. UORO is a modification of NoBackTrack that bypasses the need for model sparsity and makes implementation easy in current deep learning frameworks, even for complex models. Read More


Generative adversarial networks (GANs) transform latent vectors into visually plausible images. It is generally thought that the original GAN formulation gives no out-of-the-box method to reverse the mapping, projecting images back into latent space. We introduce a simple, gradient-based technique called stochastic clipping. Read More


While Truncated Back-Propagation through Time (BPTT) is the most popular approach to training Recurrent Neural Networks (RNNs), it suffers from being inherently sequential (making parallelization difficult) and from truncating gradient flow between distant time-steps. We investigate whether Target Propagation (TPROP) style approaches can address these shortcomings. Unfortunately, extensive experiments suggest that TPROP generally underperforms BPTT, and we end with an analysis of this phenomenon, and suggestions for future work. Read More


We consider the general problem of modeling temporal data with long-range dependencies, wherein new observations are fully or partially predictable based on temporally-distant, past observations. A sufficiently powerful temporal model should separate predictable elements of the sequence from unpredictable elements, express uncertainty about those unpredictable elements, and rapidly identify novel elements that may help to predict the future. To create such models, we introduce Generative Temporal Models augmented with external memory systems. Read More


Neural language models predict the next token using a latent representation of the immediate token history. Recently, various methods for augmenting neural language models with an attention mechanism over a differentiable memory have been proposed. For predicting the next token, these models query information from a memory of the recent history which can facilitate learning mid- and long-range dependencies. Read More


This paper aims at developing robust data modelling techniques using stochastic configuration networks (SCNs), where a weighted least squares method with the well-known kernel density estimation (KDE) is used in the design of SCNs. The alternating optimization (AO) technique is applied for iteratively building a robust SCN model that can reduce some negative impacts, caused by corrupted data or outliers, in learning process. Simulation studies are carried out on a function approximation and four benchmark datasets, also a case study on industrial application is reported. Read More


Reason and inference require process as well as memory skills by humans. Neural networks are able to process tasks like image recognition (better than humans) but in memory aspects are still limited (by attention mechanism, size). Recurrent Neural Network (RNN) and it's modified version LSTM are able to solve small memory contexts, but as context becomes larger than a threshold, it is difficult to use them. Read More


We present observations and discussion of previously unreported phenomena discovered while training residual networks. The goal of this work is to better understand the nature of neural networks through the examination of these new empirical results. These behaviors were identified through the application of Cyclical Learning Rates (CLR) and linear network interpolation. Read More


Finding the origin of slow and infra-slow oscillations could reveal or explain brain mechanisms in health and disease. Here, we present a biophysically constrained computational model of a neural network where the inclusion of astrocytes introduced slow and infra-slow-oscillations, through two distinct mechanisms. Specifically, we show how astrocytes can modulate the fast network activity through their slow inter-cellular calcium wave speed and amplitude and possibly cause the oscillatory imbalances observed in diseases commonly known for such abnormalities, namely Alzheimer's disease, Parkinson's disease, epilepsy, depression and ischemic stroke. Read More


Robust control design for quantum systems has been recognized as a key task in quantum information technology, molecular chemistry and atomic physics. In this paper, an improved differential evolution algorithm of msMS_DE is proposed to search robust fields for various quantum control problems. In msMS_DE, multiple samples are used for fitness evaluation and a mixed strategy is employed for mutation operation. Read More


The MAP-Elites algorithm produces a set of high-performing solutions that vary according to features defined by the user. This technique has the potential to be a powerful tool for design space exploration, but is limited by the need for numerous evaluations. The Surrogate-Assisted Illumination algorithm (SAIL), introduced here, integrates approximative models and intelligent sampling of the objective function to minimize the number of evaluations required by MAP-Elites. Read More


Synapse crossbar is an elementary structure in Neuromorphic Computing Systems (NCS). However, the limited size of crossbars and heavy routing congestion impedes the NCS implementations of big neural networks. In this paper, we propose a two-step framework (namely, \textit{group scissor}) to scale NCS designs to big neural networks. Read More


Increasing nature-inspired metaheuristic algorithms are applied to solving the real-world optimization problems, as they have some advantages over the classical methods of numerical optimization. This paper has proposed a new nature-inspired metaheuristic called Whale Swarm Algorithm for function optimization, which is inspired by the whales behavior of communicating with each other via ultrasound for hunting. The proposed Whale Swarm Algorithm has been compared with several popular metaheuristic algorithms on comprehensive performance metrics. Read More


Restricted Boltzmann machines (RBMs) are energy-based neural-networks which are commonly used as the building blocks for deep architectures neural architectures. In this work, we derive a deterministic framework for the training, evaluation, and use of RBMs based upon the Thouless-Anderson-Palmer (TAP) mean-field approximation of widely-connected systems with weak interactions coming from spin-glass theory. While the TAP approach has been extensively studied for fully-visible binary spin systems, our construction is generalized to latent-variable models, as well as to arbitrarily distributed real-valued spin systems with bounded support. Read More


The social media network phenomenon leads to a massive amount of valuable data that is available online and easy to access. Many users share images, videos, comments, reviews, news and opinions on different social networks sites, with Twitter being one of the most popular ones. Data collected from Twitter is highly unstructured, and extracting useful information from tweets is a challenging task. Read More


This paper contributes to a development of randomized methods for neural networks. The proposed learner model is generated incrementally by stochastic configuration (SC) algorithms, termed as Stochastic Configuration Networks (SCNs). In contrast to the existing randomised learning algorithms for single layer feed-forward neural networks (SLFNNs), we randomly assign the input weights and biases of the hidden nodes in the light of a supervisory mechanism, and the output weights are analytically evaluated in either constructive or selective manner. Read More


This paper presents incremental network quantization (INQ), a novel method, targeting to efficiently convert any pre-trained full-precision convolutional neural network (CNN) model into a low-precision version whose weights are constrained to be either powers of two or zero. Unlike existing methods which are struggled in noticeable accuracy loss, our INQ has the potential to resolve this issue, as benefiting from two innovations. On one hand, we introduce three interdependent operations, namely weight partition, group-wise quantization and re-training. Read More


In recent years, machine learning techniques based on neural networks for mobile computing become increasingly popular. Classical multi-layer neural networks require matrix multiplications at each stage. Multiplication operation is not an energy efficient operation and consequently it drains the battery of the mobile device. Read More


In application domains such as healthcare, we want accurate predictive models that are also causally interpretable. In pursuit of such models, we propose a causal regularizer to steer predictive models towards causally-interpretable solutions and theoretically study its properties. In a large-scale analysis of Electronic Health Records (EHR), our causally-regularized model outperforms its L1-regularized counterpart in causal accuracy and is competitive in predictive performance. Read More


Although deep learning models have proven effective at solving problems in natural language processing, the mechanism by which they come to their conclusions is often unclear. As a result, these models are generally treated as black boxes, yielding no insight of the underlying learned patterns. In this paper we consider Long Short Term Memory networks (LSTMs) and demonstrate a new approach for tracking the importance of a given input to the LSTM for a given output. Read More


In this paper we introduce the deep kernelized autoencoder, a neural network model that allows an explicit approximation of (i) the mapping from an input space to an arbitrary, user-specified kernel space and (ii) the back-projection from such a kernel space to input space. The proposed method is based on traditional autoencoders and is trained through a new unsupervised loss function. During training, we optimize both the reconstruction accuracy of input samples and the alignment between a kernel matrix given as prior and the inner products of the hidden representations computed by the autoencoder. Read More


The Cerebellar Model Articulation Controller (CMAC) is an influential brain-inspired computing model in many relevant fields. Since its inception in the 1970s, the model has been intensively studied and many variants of the prototype, such as Kernel-CMAC, Self-Organizing Map CMAC, and Linguistic CMAC, have been proposed. This review article focus on how the CMAC model is gradually developed and refined to meet the demand of fast, adaptive, and robust control. Read More


We introduce a genetic programming method for solving multiple Boolean circuit synthesis tasks simultaneously. This allows us to solve a set of elementary logic functions twice as easily as with a direct, single-task approach. Read More


Neural networks that compute over graph structures are a natural fit for problems in a variety of domains, including natural language (parse trees) and cheminformatics (molecular graphs). However, since the computation graph has a different shape and size for every input, such networks do not directly support batched training or inference. They are also difficult to implement in popular deep learning libraries, which are based on static data-flow graphs. Read More


This paper presents a multi-layer perceptron model for the estimation of classrooms number of occupants from sensed indoor environmental data-relative humidity, air temperature, and carbon dioxide concentration. The modelling datasets were collected from two classrooms in the Secondary School of Pombal, Portugal. The number of occupants and occupation periods were obtained from class attendance reports. Read More


The abstraction tasks are challenging for multi- modal sequences as they require a deeper semantic understanding and a novel text generation for the data. Although the recurrent neural networks (RNN) can be used to model the context of the time-sequences, in most cases the long-term dependencies of multi-modal data make the back-propagation through time training of RNN tend to vanish in the time domain. Recently, inspired from Multiple Time-scale Recurrent Neural Network (MTRNN), an extension of Gated Recurrent Unit (GRU), called Multiple Time-scale Gated Recurrent Unit (MTGRU), has been proposed to learn the long-term dependencies in natural language processing. Read More


Machine learning has been gaining traction in recent years to meet the demand for tools that can efficiently analyze and make sense of the ever-growing databases of biomedical data in health care systems around the world. However, effectively using machine learning methods requires considerable domain expertise, which can be a barrier of entry for bioinformaticians new to computational data science methods. Therefore, off-the-shelf tools that make machine learning more accessible can prove invaluable for bioinformaticians. Read More


Computing high quality node separators in large graphs is necessary for a variety of applications, ranging from divide-and-conquer algorithms to VLSI design. In this work, we present a novel distributed evolutionary algorithm tackling the k-way node separator problem. A key component of our contribution includes new k-way local search algorithms based on maximum flows. Read More


A particle swarm optimizer (PSO) loosely based on the phenomena of crystallization and a chaos factor which follows the complimentary error function is described. The method features three phases: diffusion, directed motion, and nucleation. During the diffusion phase random walk is the only contributor to particle motion. Read More


Attention networks have proven to be an effective approach for embedding categorical inference within a deep neural network. However, for many tasks we may want to model richer structural dependencies without abandoning end-to-end training. In this work, we experiment with incorporating richer structural distributions, encoded using graphical models, within deep networks. Read More


In the present work, we develop a deep-learning approach for differentiating the eye-movement behavior of people with neurodegenerative diseases over healthy control subjects during reading well-defined sentences. We define an information compaction of the eye-tracking data of subjects without and with probable Alzheimer's disease when reading a set of well-defined, previously validated, sentences including high-, low-predictable sentences, and proverbs. Using this information we train a set of denoising sparse-autoencoders and build a deep neural network with these and a softmax classifier. Read More


We investigate scaling properties of human brain functional networks in the resting-state. Analyzing network degree distributions, we statistically test whether their tails scale as power-law or not. Initial studies, based on least-squares fitting, were shown to be inadequate for precise estimation of power-law distributions. Read More


Many biological and cognitive systems do not operate deep into one or other regime of activity. Instead, they exploit critical surfaces poised at transitions in their parameter space. The pervasiveness of criticality in natural systems suggests that there may be general principles inducing this behaviour. Read More


We have developed an efficient information-maximization method for computing the optimal shapes of tuning curves of sensory neurons by optimizing the parameters of the underlying feedforward network model. When applied to the problem of population coding of visual motion with multiple directions, our method yields several types of tuning curves with both symmetric and asymmetric shapes that resemble what have been found in the visual cortex. Our result suggests that the diversity or heterogeneity of tuning curve shapes as observed in neurophysiological experiment might actually constitute an optimal population representation of visual motions with multiple components. Read More


One of the most common approaches for multiobjective optimization is to generate a solution set that well approximates the whole Pareto-optimal frontier to facilitate the later decision-making process. However, how to evaluate and compare the quality of different solution sets remains challenging. Existing measures typically require additional problem knowledge and information, such as a reference point or a substituted set of the Pareto-optimal frontier. Read More


When setting up field experiments, to test and compare a range of genotypes (e.g. maize hybrids), it is important to account for any possible field effect that may otherwise bias performance estimates of genotypes. Read More


Given the potential X-ray radiation risk to the patient, low-dose CT has attracted a considerable interest in the medical imaging field. The current main stream low-dose CT methods include vendor-specific sinogram domain filtration and iterative reconstruction, but they need to access original raw data whose formats are not transparent to most users. Due to the difficulty of modeling the statistical characteristics in the image domain, the existing methods for directly processing reconstructed images cannot eliminate image noise very well while keeping structural details. Read More