Computer Science - Networking and Internet Architecture Publications (50)

Search

Computer Science - Networking and Internet Architecture Publications

We consider an energy harvesting two-hop network where a source is communicating to a destination through a relay. During a given communication session time, the source collects measurement updates from a physical phenomenon and sends them to the relay, which then forwards them to the destination. The objective is to send these updates to the destination as timely as possible; namely, such that the total age of information is minimized by the end of the communication session, subject to energy causality constraints at the source and the relay, and data causality constraints at the relay. Read More


We state and solve a problem of the optimal geographic caching of content in cellular networks, where linear combinations of contents are stored in the caches of base stations. We consider a general content popularity distribution and a general distribution of the number of stations covering the typical location in the network. We are looking for a policy of content caching maximizing the probability of serving the typical content request from the caches of covering stations. Read More


Dynamic adaptive streaming over HTTP (DASH) has recently been widely deployed in the Internet and adopted in the industry. It, however, does not impose any adaptation logic for selecting the quality of video fragments requested by clients and suffers from lackluster performance with respect to a number of desirable properties: efficiency, stability, and fairness when multiple players compete for a bottleneck link. In this paper, we propose a throughput-friendly DASH (TFDASH) rate control scheme for video streaming with multiple clients over DASH to well balance the trade-offs among efficiency, stability, and fairness. Read More


In the 360-degree immersive video, a user only views a part of the entire raw video frame based on her viewing direction. However, today's 360-degree video players always fetch the entire panoramic view regardless of users' head movement, leading to significant bandwidth waste that can be potentially avoided. In this paper, we propose a novel adaptive streaming scheme for 360-degree videos. Read More


Wireless engineers and business planners commonly raise the question on where, when, and how millimeter-wave (mmWave) will be used in 5G and beyond. Since the next generation network is not just a new radio access standard, but instead an integration of networks for vertical markets with diverse applications, answers to the question depend on scenarios and use cases to be deployed. This paper gives four 5G mmWave deployment examples and describes in chronological order the scenarios and use cases of their probable deployment, including expected system architectures and hardware prototypes. Read More


With onboard operating systems becoming increasingly common in vehicles, the real-time broadband infotainment and Intelligent Transportation System (ITS) service applications in fast-motion vehicles become ever demanding, which are highly expected to significantly improve the efficiency and safety of our daily on-road lives. The emerging ITS and vehicular applications, e.g. Read More


Massive Machine-Type Communication (mMTC) is expected to be strongly supported by future 5G wireless networks. Its deployment, however, is seriously challenged by the high risk of random access (RA) collision. A popular concept is to reduce RA collisions by clustering mMTC devices into groups, and to connect group members with device-to-device (D2D) links. Read More


We investigate the design of the optimal routing path in a moving vehicles involved the internet of things (IoT). In our model, jammers exist that may interfere with the information exchange between wireless nodes, leading to worsened quality of service (QoS) in communications. In addition, the transmit power of each battery-equipped node is constrained to save energy. Read More


Increasing data traffic demands over wireless spectrum have necessitated spectrum sharing and coexistence between heterogeneous systems such as radar and cellular communications systems. In this context, we specifically investigate the co-channel coexistence between an air traffic control (ATC) radar and a wide area cellular communication (comms) system. We present a comprehensive characterization and analysis of interference caused by the comms system on the ATC radar with respect to multiple parameters such as radar range, protection radius around the radar, and radar antenna elevation angle. Read More


With the emerging of the fifth generation (5G) mobile communication systems, millimeter wave transmissions are believed to be a promising solution for vehicular networks, especially in vehicle to vehicle (V2V) communications. In millimeter wave V2V communications, different vehicular networking services have different quality requirements for V2V multi-hop links. To evaluate the quality of different V2V wireless links, a new link quality indicator is proposed in this paper considering requirements of the real-time and the reliability in V2V multi-hop links. Read More


Coordinated multipoint (CoMP) communications are considered for the fifth-generation (5G) small cell networks as a tool to improve the high data rates and the cell-edge throughput. The average achievable rates of the small-cell base stations (SBS) cooperation strategies with distance and received signal power constraints are respectively derived for the fractal small-cell networks based on the anisotropic path loss model. Simulation results are presented to show that the average achievable rate with the received signal power constraint is larger than the rate with a distance constraint considering the same number of cooperative SBSs. Read More


We introduce a new model of spatial random multiple access systems with a non-standard departure policy: all arriving messages are distributed uniformly on a finite sphere in the space, and when a successful transmission of a single message occurs, the transmitted message leaves the system together with all its neighbours within a ball of a given radius centred at the message's location. We consider three classes of protocols: centralised protocols and decentralised protocols with either ternary or binary feedback; and analyse their stability. Further, we discuss some asymptotic properties of stable protocols. Read More


-Multipath communications at the Internet scale have been a myth for a long time, with no actual protocol being deployed so that multiple paths could be taken by a same connection on the way towards an Internet destination. Recently, the Multipath Transport Control Protocol (MPTCP) extension was standardized and is undergoing a quick adoption in many use-cases, from mobile to fixed access networks, from data-centers to core networks. Among its major benefits -- i. Read More


With wireless network virtualization, Mobile Virtual Network Operators (MVNOs) can develop new services on a low-cost platform by leasing virtual resources from mobile network owners. In this paper, we investigate a two-stage spectrum leasing framework, where an MVNO acquires radio spectrum through both advance reservation and on-demand request. To maximize its surplus, the MVNO jointly optimizes the amount of spectrum to lease in the two stages by taking into account the traffic distribution, random user locations, wireless channel statistics, Quality of Service (QoS) requirements, and the prices differences. Read More


Understanding the detailed queueing behavior of a networking session is critical in enabling low-latency services over the Internet. Especially when the packet arrival and service rates at the queue of a link vary over time and moreover when the session is short-lived, analyzing the corresponding queue behavior as a function of time, which involves a transient analysis, becomes extremely challenging. In this paper, we propose and develop a new analytical framework that anatomizes the transient queue behavior under time-varying arrival and service rates even under unstable conditions. Read More


Communications using frequency bands in the millimeter-wave range can play a key role in future generations of mobile networks. By allowing large bandwidth allocations, high carrier frequencies will provide high data rates to support the ever-growing capacity demand. The prevailing challenge at high frequencies is the mitigation of large path loss and link blockage effects. Read More


WiFi MAC architecture supports aggregation at two layers. The MAC service data units (MSDUs) can be aggregated to form AMSDUs. Each AMSDU serves as a single MAC protocol data unit (MPDU). Read More


In this paper, we use dynamical systems to analyze stability of desynchronization algorithms at equilibrium. We start by illustrating the equilibrium of a dynamic systems and formalizing force components and time phases. Then, we use Linear Approximation to obtain Jaconian (J) matrixes which are used to find the eigenvalues. Read More


In this paper, we evaluate M-DWARF performance by experimentation and simulation. We validate its functionalities on TelosB motes and compare its performance with EXT-DESYNC, and LIGHTWEIGHT on TOSSIM. On simulation, we test the algorithms on several multihop topologies and discuss both the average and problematic cases. Read More


Desynchronization is one of the primitive services for complex networks because it arranges nodes to take turns accessing a shared resource. TDMA is a practical application of desynchronization because it allows node to share a common medium. In this paper, we propose a novel desynchronization algorithm using artificial force field called Multi-hop Desynchronization With an ARtificial Force field or M-DWARF and use it to solve TDMA problems in wireless sensor networks (WSNs). Read More


Recently vehicle-to-vehicle (V2V) communication emerged as a key enabling technology to ensure traffic safety and other mission-critical applications. In this paper, a novel proximity and quality-of-service (QoS)-aware resource allocation for V2V communication is proposed. The proposed approach exploits the spatial-temporal aspects of vehicles in terms of their physical proximity and traffic demands, to minimize the total transmission power while considering queuing latency and reliability. Read More


Network Function Virtualization (NFV) enables the "softwarization" of network functions, which are implemented on virtual machines hosted on Commercial off-the-shelf (COTS) servers. Both the composition of the virtual network functions (VNFs) into a forwarding graph (FG) at the logical layer and the embedding of the FG on the servers need to take into account the less-than-carrier-grade reliability of COTS components. This work investigates the trade-off between end-to-end reliability and computational load per server via the joint design of VNF chain composition (CC) and FG embedding (FGE) under the assumption of a bipartite FG that consists of controller and regular VNFs. Read More


We investigate the Robust Multiperiod Network Design Problem, a generalization of the classical Capacitated Network Design Problem that additionally considers multiple design periods and provides solutions protected against traffic uncertainty. Given the intrinsic difficulty of the problem, which proves challenging even for state-of-the art commercial solvers, we propose a hybrid primal heuristic based on the combination of ant colony optimization and an exact large neighborhood search. Computational experiments on a set of realistic instances from the SNDlib show that our heuristic can find solutions of extremely good quality with low optimality gap. Read More


The recent demographic trends indicate towards a rapidly increasing population growth and a significant portion of this increased population now prefer to live mostly in cities. In connection with this, it has become the responsibility of the government to ensure a quality standard of living in the cities and also make sure that these facilities trickle down to the next generation. A program named Smart City Mission has been started for this purpose. Read More


In this paper, the fundamental problem of distribution and proactive caching of computing tasks in fog networks is studied under latency and reliability constraints. In the proposed scenario, computing can be executed either locally at the user device or offloaded to an edge cloudlet. Moreover, cloudlets exploit both their computing and storage capabilities by proactively caching popular task computation results to minimize computing latency. Read More


Network Function Virtualization (NFV) aims to simplify deployment of network services by running Virtual Network Functions (VNFs) on commercial off-the-shelf servers. Service deployment involves placement of VNFs and in-sequence routing of traffic flows through VNFs comprising a Service Chain (SC). The joint VNF placement and traffic routing is usually referred as SC mapping. Read More


Base station cooperation (BSC) has recently arisen as a promising way to increase the capacity of a wireless network. Implementing BSC adds a new design dimension to the classical wireless network design problem: how to define the subset of base stations (clusters) that coordinate to serve a user. Though the problem of forming clusters has been extensively discussed from a technical point of view, there is still a lack of effective optimization models for its representation and algorithms for its solution. Read More


We revisit the mathematical models for wireless network jamming introduced by Commander et al.: we first point out the strong connections with classical wireless network design and then we propose a new model based on the explicit use of signal-to-interference quantities. Moreover, to address the intrinsic uncertain nature of the jamming problem and tackle the peculiar right-hand-side (RHS) uncertainty of the problem, we propose an original robust cutting-plane algorithm drawing inspiration from Multiband Robust Optimization. Read More


Domain Name System (DNS), one of the important infrastructure in the Internet, was vulnerable to attacks, for the DNS designer didn't take security issues into consideration at the beginning. The defects of DNS may lead to users' failure of access to the websites, what's worse, users might suffer a huge economic loss. In order to correct the DNS wrong resource records, we propose a Self-Feedback Correction System for DNS (SFCSD), which can find and track a large number of common websites' domain name and IP address correct correspondences to provide users with a real-time auto-updated correct (IP, Domain) binary tuple list. Read More


Forwarding data by name has been assumed to be a necessary aspect of an information-centric redesign of the current Internet architecture that makes content access, dissemination, and storage more efficient. The Named Data Networking (NDN) and Content-Centric Networking (CCNx) architectures are the leading examples of such an approach. However, forwarding data by name incurs storage and communication complexities that are orders of magnitude larger than solutions based on forwarding data using addresses. Read More


The IEEE 802.11ac standard introduces new downlink multi-user MIMO (DL-MU-MIMO) transmissions to up to four users in order to increase spatial reuse in wireless local area networks (WLANs). We argue that even better WLAN per- formance can be achieved by slightly modifying the DL-MU-MIMO scheduling. Read More


The apps installed on a smartphone can reveal much information about a user, such as their medical conditions, sexual orientation, or religious beliefs. Additionally, the presence or absence of particular apps on a smartphone can inform an adversary who is intent on attacking the device. In this paper, we show that a passive eavesdropper can feasibly identify smartphone apps by fingerprinting the network traffic that they send. Read More


Mission critical data dissemination in massive Internet of things (IoT) networks imposes constraints on the message transfer delay between devices. Due to low power and communication range of IoT devices, data is foreseen to be relayed over multiple device-to-device (D2D) links before reaching the destination. The coexistence of a massive number of IoT devices poses a challenge in maximizing the successful transmission capacity of the overall network alongside reducing the multi-hop transmission delay in order to support mission critical applications. Read More


This paper studies reliability of probabilistic neighbor-aware gossip algorithms over three well- known large-scale random topologies, namely Bernoulli (or Erd\H{o}s-R\'enyi) graph, the random geometric graph, and the scale-free graph. We propose a new and simple algorithm which ensures higher reliability at lower message complexity than the three families of gossip algorithms over every topology in our study. We also present a uniform approach to model the reliability of probabilistic gossip algorithms in the different random graphs, whose properties, in fact, are quite different. Read More


Control of multihop Wireless networks in a distributed manner while providing end-to-end delay requirements for different flows, is a challenging problem. Using the notions of Draining Time and Discrete Review from the theory of fluid limits of queues, an algorithm that meets delay requirements to various flows in a network is constructed. The algorithm involves an optimization which is implemented in a cyclic distributed manner across nodes by using the technique of iterative gradient ascent, with minimal information exchange between nodes. Read More


In this paper, we first remodel the line coverage as a 1D discrete problem with co-linear targets. Then, an order-based greedy algorithm, called OGA, is proposed to solve the problem optimally. It will be shown that the existing order in the 1D modeling, and especially the resulted Markov property of the selected sensors can help design greedy algorithms such as OGA. Read More


We study online resource allocation in a cloud computing platform, through a posted pricing mechanism: The cloud provider publishes a unit price for each resource type, which may vary over time; upon arrival at the cloud system, a cloud user either takes the current prices, renting resources to execute its job, or refuses the prices without running its job there. We design pricing functions based on the current resource utilization ratios, in a wide array of demand-supply relationships and resource occupation durations, and prove worst-case competitive ratios of the pricing functions in terms of social welfare. In the basic case of a single-type, non-recycled resource (i. Read More


Waveform design is a key technique to jointly exploit a beamforming gain, the channel frequency-selectivity and the rectifier nonlinearity, so as to enhance the end-to-end power transfer efficiency of Wireless Power Transfer (WPT). Those waveforms have been designed assuming perfect channel state information at the transmitter. This paper proposes two waveform strategies relying on limited feedback for multi-antenna multi-sine WPT over frequency-selective channels. Read More


Real-time distributed control is a promising application of 5G in which communication links should satisfy certain reliability guarantees. In this letter, we derive closed-form maximum average rate when a device (e.g. Read More


Spatial distributions of other cell interference (OCIF) and interference to own-cell power ratio (IOPR) with reference to the distance between a mobile and its serving base station (BS) are modeled for the down-link reception of cellular systems based on the best-cell configuration instead of the nearest-cell configuration. This enables a more realistic evaluation of two competing objectives in network dimensioning: coverage and rate capacity. More outcomes useful for dynamic network dimensioning are also derived, including maximum BS transmission power per cell size and the cell density required for an adequate coverage of a given traffic density. Read More


To manage and maintain large-scale cellular networks, operators need to know which sectors underperform at any given time. For this purpose, they use the so-called hot spot score, which is the result of a combination of multiple network measurements and reflects the instantaneous overall performance of individual sectors. While operators have a good understanding of the current performance of a network and its overall trend, forecasting the performance of each sector over time is a challenging task, as it is affected by both regular and non-regular events, triggered by human behavior and hardware failures. Read More


Heterogeneous wireless networks with small-cell deployments in licensed and unlicensed spectrum bands are a promising approach for expanding wireless connectivity and service. As a result, wireless service providers (SPs) are adding small-cells to augment their existing macro-cell deployments. This added flexibility complicates network management, in particular, service pricing and spectrum allocations across macro- and small-cells. Read More


In this paper, we present a new and significant theoretical discovery. If the absolute height difference between base station (BS) antenna and user equipment (UE) antenna is larger than zero, then the network performance in terms of both the coverage probability and the area spectral efficiency (ASE) will continuously decrease toward zero as the BS density increases for ultra-dense (UD) small cell networks (SCNs). Such findings are completely different from the conclusions in existing works, both quantitatively and qualitatively. Read More


Many real-world communication networks often have hybrid nature with both fixed nodes and moving modes, such as the mobile phone networks mainly composed of fixed base stations and mobile phones. In this paper, we discuss the information transmission process on the hybrid networks with both fixed and mobile nodes. The fixed nodes (base stations) are connected as a spatial lattice on the plane forming the information-carrying backbone, while the mobile nodes (users), which are the sources and destinations of information packets, connect to their current nearest fixed nodes respectively to deliver and receive information packets. Read More


The efficient deployment of Internet of Things (IoT) over cellular networks, such as Long Term Evolution (LTE) or the next generation 5G, entails several challenges. For massive IoT, reducing the energy consumption on the device side becomes essential. One of the main characteristics of massive IoT is small data transmissions. Read More


It has been shown that it is impossible to achieve both stringent end-to-end deadline and reliability guarantees in a large network without having complete information of all future packet arrivals. In order to maintain desirable performance in the presence of uncertainty of future packet arrivals, common practice is to add redundancy by increasing link capacities. This paper studies the amount of capacity needed to provide stringent performance guarantees. Read More


The Age-of-Information (AoI) has recently been proposed as an important metric for investigating the timeliness performance in information-update systems. Prior studies on AoI optimization often consider a Push model, which is concerned about when and how to "push" (i.e. Read More


Cluster structure in cognitive radio networks facilitates cooperative spectrum sensing, routing and other functionalities. The unlicensed channels, which are available for every member of a group of cognitive radio users, consolidate the group into a cluster, and the availability of unlicensed channels decides the robustness of that cluster against the licensed users' influence. This paper analyses the problem that how to form robust clusters in cognitive radio network, so that more cognitive radio users can get benefits from cluster structure even when the primary users' operation are intense. Read More


Wireless access points on unmanned aerial vehicles (UAVs) are being considered for mobile service provisioning in commercial networks. To be able to efficiently use these devices in cellular networks it is necessary to first have a qualitative and quantitative understanding of how their design parameters reflect on the service quality experienced by the end user. In this paper we set up a scenario where a network of UAVs operating at a certain height above ground provide wireless service within coverage areas shaped by their directional antennas. Read More