Computer Science - Computer Vision and Pattern Recognition Publications (50)

Search

Computer Science - Computer Vision and Pattern Recognition Publications

We introduce a new framework for learning dense correspondence between deformable 3D shapes. Existing learning based approaches model shape correspondence as a labelling problem, where each point of a query shape receives a label identifying a point on some reference domain; the correspondence is then constructed a posteriori by composing the label predictions of two input shapes. We propose a paradigm shift and design a structured prediction model in the space of functional maps, linear operators that provide a compact representation of the correspondence. Read More


Many neuroimaging studies focus on the cortex, in order to benefit from better signal to noise ratios and reduced computational burden. Cortical data are usually projected onto a reference mesh, where subsequent analyses are carried out. Several multiscale approaches have been proposed for analyzing these surface data, such as spherical harmonics and graph wavelets. Read More


Text line detection and localization is a crucial step for full page document analysis, but still suffers from heterogeneity of real life documents. In this paper, we present a new approach for full page text recognition. Localization of the text lines is based on regressions with Fully Convolutional Neural Networks and Multidimensional Long Short-Term Memory as contextual layers. Read More


Automatic affect recognition is a challenging task due to the various modalities emotions can be expressed with. Applications can be found in many domains including multimedia retrieval and human computer interaction. In recent years, deep neural networks have been used with great success in determining emotional states. Read More


The field of fixation prediction is heavily model-driven, with dozens of new models published every year. However, progress in the field can be difficult to judge because models are compared using a variety of inconsistent metrics. As soon as a saliency map is optimized for a certain metric, it is penalized by other metrics. Read More


Computer vision systems are designed to work well within the context of everyday photography. However, artists often render the world around them in ways that do not resemble photographs. Artwork produced by people is not constrained to mimic the physical world, making it more challenging for machines to recognize. Read More


We focus on the challenging task of realtime semantic segmentation in this paper. It finds many practical applications and yet is with fundamental difficulty of reducing a large portion of computation for pixel-wise label inference. We propose an compressed-PSPNet-based image cascade network (ICNet) that incorporates multi-resolution branches under proper label guidance to address this challenge. Read More


Despite the recent success of deep-learning based semantic segmentation, deploying a pre-trained road scene segmenter to a city whose images are not presented in the training set would not achieve satisfactory performance due to dataset biases. Instead of collecting a large number of annotated images of each city of interest to train or refine the segmenter, we propose an unsupervised learning approach to adapt road scene segmenters across different cities. By utilizing Google Street View and its time-machine feature, we can collect unannotated images for each road scene at different times, so that the associated static-object priors can be extracted accordingly. Read More


Learning on Grassmann manifold has become popular in many computer vision tasks, with the strong capability to extract discriminative information for imagesets and videos. However, such learning algorithms particularly on high-dimensional Grassmann manifold always involve with significantly high computational cost, which seriously limits the applicability of learning on Grassmann manifold in more wide areas. In this research, we propose an unsupervised dimensionality reduction algorithm on Grassmann manifold based on the Locality Preserving Projections (LPP) criterion. Read More


This work introduces a novel framework for quantifying the presence and strength of recurrent dynamics in video data. Specifically, we provide continuous measures of periodicity (perfect repetition) and quasiperiodicity (superposition of periodic modes with non-commensurate periods), in a way which does not require segmentation, training, object tracking or 1-dimensional surrogate signals. Our methodology operates directly on video data. Read More


Existing zero-shot learning (ZSL) models typically learn a projection function from a feature space to a semantic embedding space (e.g.~attribute space). Read More


In this thesis, we study two problems based on clustering algorithms. In the first problem, we study the role of visual attributes using an agglomerative clustering algorithm to whittle down the search area where the number of classes is high to improve the performance of clustering. We observe that as we add more attributes, the clustering performance increases overall. Read More


Cross-modal audio-visual perception has been a long-lasting topic in psychology and neurology, and various studies have discovered strong correlations in human perception of auditory and visual stimuli. Despite works in computational multimodal modeling, the problem of cross-modal audio-visual generation has not been systematically studied in the literature. In this paper, we make the first attempt to solve this cross-modal generation problem leveraging the power of deep generative adversarial training. Read More


Visual Question Answering (VQA) has received a lot of attention over the past couple of years. A number of deep learning models have been proposed for this task. However, it has been shown that these models are heavily driven by superficial correlations in the training data and lack compositionality -- the ability to answer questions about unseen compositions of seen concepts. Read More


We propose an effective framework for multi-phase image segmentation and semi-supervised data clustering by introducing a novel region force term into the Potts model. Assume the probability that a pixel or a data point belongs to each class is known a priori. We show that the corresponding indicator function obeys the Bernoulli distribution and the new region force function can be computed as the negative log-likelihood function under the Bernoulli distribution. Read More


This paper introduces a generalization of Convolutional Neural Networks (CNNs) from low-dimensional grid data, such as images, to graph-structured data. We propose a novel spatial convolution utilizing a random walk to uncover the relations within the input, analogous to the way the standard convolution uses the spatial neighborhood of a pixel on the grid. The convolution has an intuitive interpretation, is efficient and scalable and can also be used on data with varying graph structure. Read More


This paper provides an overview of the on-going compact descriptors for video analysis standard (CDVA) from the ISO/IEC moving pictures experts group (MPEG). MPEG-CDVA targets at defining a standardized bitstream syntax to enable interoperability in the context of video analysis applications. During the developments of MPEGCDVA, a series of techniques aiming to reduce the descriptor size and improve the video representation ability have been proposed. Read More


In this paper, we propose a novel learning based method for automated segmenta-tion of brain tumor in multimodal MRI images. The machine learned features from fully convolutional neural network (FCN) and hand-designed texton fea-tures are used to classify the MRI image voxels. The score map with pixel-wise predictions is used as a feature map which is learned from multimodal MRI train-ing dataset using the FCN. Read More


Being a task of establishing spatial correspondences, medical image registration is often formalized as finding the optimal transformation that best aligns two images. Since the transformation is such an essential component of registration, most existing researches conventionally quantify the registration uncertainty, which is the confidence in the estimated spatial correspondences, by the transformation uncertainty. In this paper, we give concrete examples and reveal that using the transformation uncertainty to quantify the registration uncertainty is inappropriate and sometimes misleading. Read More


Among the patch-based image denoising processing methods, smooth ordering of local patches (patch ordering) has been shown to give state-of-art results. For image denoising the patch ordering method forms two large TSPs (Traveling Salesman Problem) comprised of nodes in N-dimensional space. Ten approximate solutions of the two large TSPs are then used in a filtering process to form the reconstructed image. Read More


Classifiers trained on given databases perform poorly when tested on data acquired in different settings. This is explained in domain adaptation through a shift among distributions of the source and target domains. Attempts to align them have traditionally resulted in works reducing the domain shift by introducing appropriate loss terms, measuring the discrepancies between source and target distributions, in the objective function. Read More


This paper addresses deep face recognition (FR) problem under open-set protocol, where ideal face features are expected to have smaller maximal intra-class distance than minimal inter-class distance under a suitably chosen metric space. However, few existing algorithms can effectively achieve this criterion. To this end, we propose the angular softmax (A-Softmax) loss that enables convolutional neural networks (CNNs) to learn angularly discriminative features. Read More


While the optimization problem behind deep neural networks is highly non-convex, it is frequently observed in practice that training deep networks seems possible without getting stuck in suboptimal points. It has been argued that this is the case as all local minima are close to being globally optimal. We show that this is (almost) true, in fact almost all local minima are globally optimal, for a fully connected network with squared loss and analytic activation function given that the number of hidden units of one layer of the network is larger than the number of training points and the network structure from this layer on is pyramidal. Read More


Speech is the most common communication method between humans and involves the perception of both auditory and visual channels. Automatic speech recognition focuses on interpreting the audio signals, but it has been demonstrated that video can provide information that is complementary to the audio. Thus, the study of automatic lip-reading is important and is still an open problem. Read More


Some lung diseases are related to bronchial airway structures and morphology. Although airway segmentation from chest CT volumes is an important task in the computer-aided diagnosis and surgery assistance systems for the chest, complete 3-D airway structure segmentation is a quite challenging task due to its complex tree-like structure. In this paper, we propose a new airway segmentation method from 3D chest CT volumes based on volume of interests (VOI) using gradient vector flow (GVF). Read More


Speech is the most used communication method between humans and it involves the perception of auditory and visual channels. Automatic speech recognition focuses on interpreting the audio signals, although the video can provide information that is complementary to the audio. Exploiting the visual information, however, has proven challenging. Read More


The missing phase problem in X-ray crystallography is commonly solved using the technique of molecular replacement, which borrows phases from a previously solved homologous structure, and appends them to the measured Fourier magnitudes of the diffraction patterns of the unknown structure. More recently, molecular replacement has been proposed for solving the missing orthogonal matrices problem arising in Kam's autocorrelation analysis for single particle reconstruction using X-ray free electron lasers and cryo-EM. In classical molecular replacement, it is common to estimate the magnitudes of the unknown structure as twice the measured magnitudes minus the magnitudes of the homologous structure, a procedure known as `twicing'. Read More


The problem of unsupervised learning and segmentation of hyperspectral images is a significant challenge in remote sensing. The high dimensionality of hyperspectral data, presence of substantial noise, and overlap of classes all contribute to the difficulty of automatically segmenting and clustering hyperspectral images. In this article, we propose an unsupervised learning technique that combines a density-based estimation of class modes with partial least squares regression (PLSR) on the learned modes. Read More


In this paper, we address the problem of spatio-temporal person retrieval from multiple videos using a natural language query, in which we output a tube (i.e., a sequence of bounding boxes) which encloses the person described by the query. Read More


As part of a complete software stack for autonomous driving, NVIDIA has created a neural-network-based system, known as PilotNet, which outputs steering angles given images of the road ahead. PilotNet is trained using road images paired with the steering angles generated by a human driving a data-collection car. It derives the necessary domain knowledge by observing human drivers. Read More


In this paper we introduce an adaptive cost function for pointcloud registration. The algorithm automatically estimates the sensor noise, which is important for generalization across different sensors and environments. Through experiments on real and synthetic data, we show significant improvements in accuracy and robustness over state-of-the-art solutions. Read More


We propose a novel convolutional neural network architecture to address the fine-grained recognition problem of multi-view dynamic facial action unit detection. We leverage recent gains in large-scale object recognition by formulating the task of predicting the presence or absence of a specific action unit in a still image of a human face as holistic classification. We then explore the design space of our approach by considering both shared and independent representations for separate action units, and also different CNN architectures for combining color and motion information. Read More


We study unsupervised learning by developing introspective generative modeling (IGM) that attains a generator using progressively learned deep convolutional neural networks. The generator is itself a discriminator, capable of introspection: being able to self-evaluate the difference between its generated samples and the given training data. When followed by repeated discriminative learning, desirable properties of modern discriminative classifiers are directly inherited by the generator. Read More


In this paper we propose introspective classifier learning (ICL) that emphasizes the importance of having a discriminative classifier empowered with generative capabilities. We develop a reclassification-by-synthesis algorithm to perform training using a formulation stemmed from the Bayes theory. Our classifier is able to iteratively: (1) synthesize pseudo-negative samples in the synthesis step; and (2) enhance itself by improving the classification in the reclassification step. Read More


We present an unsupervised learning framework for the task of monocular depth and camera motion estimation from unstructured video sequences. We achieve this by simultaneously training depth and camera pose estimation networks using the task of view synthesis as the supervisory signal. The networks are thus coupled via the view synthesis objective during training, but can be applied independently at test time. Read More


We present an approach that uses a multi-camera system to train fine-grained detectors for keypoints that are prone to occlusion, such as the joints of a hand. We call this procedure multiview bootstrapping: first, an initial keypoint detector is used to produce noisy labels in multiple views of the hand. The noisy detections are then triangulated in 3D using multiview geometry or marked as outliers. Read More


We propose SfM-Net, a geometry-aware neural network for motion estimation in videos that decomposes frame-to-frame pixel motion in terms of scene and object depth, camera motion and 3D object rotations and translations. Given a sequence of frames, SfM-Net predicts depth, segmentation, camera and rigid object motions, converts those into a dense frame-to-frame motion field (optical flow), differentiably warps frames in time to match pixels and back-propagates. The model can be trained with various degrees of supervision: 1) self-supervised by the re-projection photometric error (completely unsupervised), 2) supervised by ego-motion (camera motion), or 3) supervised by depth (e. Read More


Arabidopsis thaliana is a plant species widely utilized by scientists to estimate the impact of genetic differences in root morphological features. For this purpose, images of this plant after genetic modifications are taken to study differences in the root architecture. This task requires manual segmentations of radicular structures, although this is a particularly tedious and time-consuming labor. Read More


Deep learning models such as convolutional neural net- work have been widely used in 3D biomedical segmentation and achieve state-of-the-art performance. However, most of them often adapt a single modality or stack multiple modalities as different input channels. To better leverage the multi- modalities, we propose a deep encoder-decoder structure with cross-modality convolution layers to incorporate different modalities of MRI data. Read More


Rectifier neuron units (ReLUs) have been widely used in deep convolutional networks. An ReLU converts negative values to zeros, and does not change positive values, which leads to a high sparsity of neurons. In this work, we first examine the sparsity of the outputs of ReLUs in some popular deep convolutional architectures. Read More


Signal decomposition is a classical problem in signal processing, which aims to separate an observed signal into two or more components each with its own property. Usually each component is described by its own subspace or dictionary. Extensive research has been done for the case where the components are additive, but in real world applications, the components are often non-additive. Read More


Deep convolutional neural networks (DCNNs) are an influential tool for solving various problems in the machine learning and computer vision fields. In this paper, we introduce a new deep learning model called an Inception- Recurrent Convolutional Neural Network (IRCNN), which utilizes the power of an inception network combined with recurrent layers in DCNN architecture. We have empirically evaluated the recognition performance of the proposed IRCNN model using different benchmark datasets such as MNIST, CIFAR-10, CIFAR- 100, and SVHN. Read More


Perivascular Spaces (PVS) are a recently recognised feature of Small Vessel Disease (SVD), also indicating neuroinflammation, and are an important part of the brain's circulation and glymphatic drainage system. Quantitative analysis of PVS on Magnetic Resonance Images (MRI) is important for understanding their relationship with neurological diseases. In this work, we propose a segmentation technique based on the 3D Frangi filtering for extraction of PVS from MRI. Read More


In this paper, we propose a novel method to jointly solve scene layout estimation and global registration problems for accurate indoor 3D reconstruction. Given a sequence of range data, we first build a set of scene fragments using KinectFusion and register them through pose graph optimization. Afterwards, we alternate between layout estimation and layout-based global registration processes in iterative fashion to complement each other. Read More


Current state-of-the-art approaches to skeleton-based action recognition are mostly based on recurrent neural networks (RNN). In this paper, we propose a novel convolutional neural networks (CNN) based framework for both action classification and detection. Raw skeleton coordinates as well as skeleton motion are fed directly into CNN for label prediction. Read More


Light fields become a popular representation of three dimensional scenes, and there is interest in their processing, resampling, and compression. As those operations often result in loss of quality, there is a need to quantify it. In this work, we collect a new dataset of dense reference and distorted light fields as well as the corresponding quality scores which are scaled in perceptual units. Read More


Decoding human brain activities via functional magnetic resonance imaging (fMRI) has gained increasing attention in recent years. While encouraging results have been reported in brain states classification tasks, reconstructing the details of human visual experience still remains difficult. Two main challenges that hinder the development of effective models are the perplexing fMRI measurement noise and the high dimensionality of limited data instances. Read More


Segmenting blood vessels in fundus imaging plays an important role in medical diagnosis. Many algorithms have been proposed. While deep Neural Networks have been attracting enormous attention from computer vision community recent years and several novel works have been done in terms of its application in retinal blood vessel segmentation, most of them are based on supervised learning which requires amount of labeled data, which is both scarce and expensive to obtain. Read More


Aiming to reduce pollutant emissions, bicycles are regaining popularity specially in urban areas. However, the number of cyclists' fatalities is not showing the same decreasing trend as the other traffic groups. Hence, monitoring cyclists' data appears as a keystone to foster urban cyclists' safety by helping urban planners to design safer cyclist routes. Read More