Astrophysics of Galaxies Publications (50)


Astrophysics of Galaxies Publications

Although the cusp-core controversy for dwarf galaxies is seen as a problem, I argue that the cored central profiles can be explained by flattened cusps because they suffer from conflicting measurements and poor statistics and because there is a large number of conventional processes that could have flattened them since their creation, none of which requires new physics. Other problems, such as "too big to fail", are not discussed. Read More

The similarity of the host galaxy of FRB 121102 with those of long gamma-ray bursts and Type I super-luminous supernovae suggests that this FRB could be associated with a young magnetar. By assuming the FRB emission to be produced in the magnetosphere, we derive a lower limit on the age of the magnetar by enabling GHz emission freely escape from the dense relativistic wind of the magnetar. Another lower limit is also obtained by requiring the dispersion measure contributed by the wind electrons/positrons to be consistent with the observations of host galaxy. Read More

Extremely metal-poor, high-ionizing starbursts in the local Universe provide unique laboratories for exploring in detail the physics of high-redshift systems. Also, their ongoing star-formation and haphazard morphology make them outstanding proxies for primordial galaxies. Using integral field spectroscopy, we spatially resolved the ISM properties and massive stars of two first-class low metallicity galaxies with Wolf-Rayet features and nebular HeII emission: Mrk178 and IZw18. Read More

We present the second release of value-added catalogues of the LAMOST Spectroscopic Survey of the Galactic Anticentre (LSS-GAC DR2). The catalogues present values of radial velocity $V_{\rm r}$, atmospheric parameters --- effective temperature $T_{\rm eff}$, surface gravity log$g$, metallicity [Fe/H], $\alpha$-element to iron (metal) abundance ratio [$\alpha$/Fe] ([$\alpha$/M]), elemental abundances [C/H] and [N/H], and absolute magnitudes ${\rm M}_V$ and ${\rm M}_{K_{\rm s}}$ deduced from 1.8 million spectra of 1. Read More

Isolated HI clouds with no optical counterparts are often taken as evidence for galaxy-galaxy interactions, though an alternative hypothesis is that these are primordial 'dark galaxies' which have not formed stars. Similarly, certain kinematic features in HI streams are also controversial, sometimes taken as evidence of dark galaxies but also perhaps explicable as the result of harassment. We numerically model the passage of a galaxy through the gravitational field of cluster. Read More

The effect of baryons on the matter power spectrum is likely to have an observable effect for future galaxy surveys, like Euclid or LSST. As a first step towards a fully predictive theory, we investigate the effect of non-radiative hydrodynamics on the structure of galaxy groups sized halos, which contribute the most to the weak lensing power spectrum. We perform high resolution (more than one million particles per halo and one kilo-parsec resolution) non-radiative hydrodynamical zoom-in simulations of a sample of 16 halos, comparing the profiles to popular analytical models. Read More

We report the $4 \, \sigma$ detection of a faint object with a flux of ~ 0.3 mJy, in the vicinity of the quadruply lensed QSO MG0414+0534 using the Atacama Large Millimeter/submillimeter array (ALMA) Band 7. The object is most probably a dusty dark dwarf galaxy, which has not been detected in either the optical, near-infrared (NIR) or radio (cm) bands. Read More

I demonstrate four tight correlations of total baryonic mass, velocity and radius for a set of nearby disk galaxies: the Mass-Velocity relation $ Mt \propto V^4$; the Mass-Radius relation $ Mt \propto R^2$; the Radius-Velocity relation $R \propto V^2$; and the Mass-Radius-Velocity relation $ Mt \propto R V^2$. The Mass-Velocity relation is the familiar Baryonic Tully-Fisher relation(BTFR) and versions of the other three relations, using magnitude rather than baryonic mass, are also well known. These four observed correlations follow from a pair of more fundamental relations. Read More

It has yet to be established whether the properties of the gas in distant protocluster galaxies are significantly affected by their environment as they are in galaxies in local clusters. Through a deep, 64 hours of effective on-source integration with the ATCA, we discovered a very massive, M_mol=2.0+-0. Read More

NGC 1313 is a bulgeless nearby galaxy, classified as SB(s)d. Its proximity allows high spatial resolution observations. We performed the first detailed analysis of the emission-line properties in the nuclear region of NGC 1313, using an optical data cube obtained with the Gemini Multi-object Spectrograph. Read More

We consider the evolution of an outburst in a uniform medium under spherical symmetry, having in mind AGN feedback in the intra cluster medium (ICM). For a given density and pressure of the medium, the spatial structure and energy partition at a given time $t_{age}$ (since the onset of the outburst) are fully determined by the total injected energy $E_{inj}$ and the duration $t_b$ of the outburst. We are particularly interested in the late phase evolution when the strong shock transforms into a sound wave. Read More

Several recent studies have reported different intrinsic correlations between the AGN mid-IR luminosity ($L_{MIR}$) and the rest-frame 2-10 keV luminosity ($L_{X}$) for luminous quasars. To understand the origin of the difference in the observed $L_{X}-L_{MIR}$ relations, we study a sample of 3,247 spectroscopically confirmed type 1 AGNs collected from Bo\"{o}tes, XMM-COSMOS, XMM-XXL-North, and the SDSS quasars in the Swift/XRT footprint spanning over four orders of magnitude in luminosity. We carefully examine how different observational constraints impact the observed $L_{X}-L_{MIR}$ relations, including the inclusion of X-ray non-detected objects, possible X-ray absorption in type 1 AGNs, X-ray flux limits, and star formation contamination. Read More

We present the results of a systematic search for Lyman-alpha emitters (LAEs) at $6 \lesssim z \lesssim 7.6$ using the HST WFC3 Infrared Spectroscopic Parallel (WISP) Survey. Our total volume over this redshift range is $\sim 8 \times10^5$ Mpc$^3$, comparable to many of the narrowband surveys despite their larger area coverage. Read More

We introduce a new model for the formation and evolution of supermassive black holes (SMBHs) in the RAMSES code using sink particles, improving over previous work the treatment of gas accretion and dynamical evolution. This new model is tested against a suite of high-resolution simulations of an isolated, gas-rich, cooling halo. We study the effect of various feedback models on the SMBH growth and its dynamics within the galaxy. Read More

Strong gravitational lensing provides a powerful test of Cold Dark Matter (CDM) as it enables the detection and mass measurement of low mass haloes even if they do not contain baryons. Compact lensed sources such as Active Galactic Nuclei (AGN) are particularly sensitive to perturbing subhalos, but their use as a test of CDM has been limited by the small number of systems which have significant radio emission. Radio emission is extended enough avoid significant lensing by stars in the plane of the lens galaxy, and red enough to be minimally affected by differential dust extinction. Read More

We report on the measurement of the trigonometric parallaxes of 1612 MHz hydroxyl masers around two asymptotic giant branch stars, WX Psc and OH138.0+7.2, using the NRAO Very Long Baseline Array with in-beam phase referencing calibration. Read More

It has been well established in the past decades that the central black hole masses of galaxies correlate with dynamical properties of their harbouring bulges. This notion begs the question of whether there are causal connections between the AGN and its immediate vicinity in the host galaxy. In this paper we analyse the presence of circumnuclear star formation in a sample of 15 AGN using mid-infrared observations. Read More

Optical and near-infrared photometry, optical spectroscopy, and soft X-ray and UV monitoring of the changing look active galactic nucleus NGC 2617 show that it continues to have the appearance of a type-1 Seyfert galaxy. An optical light curve for 2010--2016 indicates that the change of type probably occurred between October 2010 and February 2012 and was not related to the brightening in 2013. In 2016 NGC 2617 brightened again to a level of activity close to that of April 2013. Read More

We present a detailed study of a molecular outflow feature in the nearby starburst galaxy NGC 253 using ALMA. We find that this feature is clearly associated with the edge of NGC 253's prominent ionized outflow, has a projected length of ~300 pc, with a width of ~50 pc and a velocity dispersion of ~40 km s^-1, consistent with an ejection from the disk about 1 Myr ago. The kinematics of the molecular gas in this feature can be interpreted (albeit not uniquely) as accelerating at a rate of 1 km s^-1 pc^-1. Read More

FUors are young stellar objects experiencing large optical outbursts due to highly enhanced accretion from the circumstellar disk onto the star. FUors are often surrounded by massive envelopes, which play a significant role in the outburst mechanism. Conversely, the subsequent eruptions might gradually clear up the obscuring envelope material and drive the protostar on its way to become a disk-only T Tauri star. Read More

We derive a new relation between the metallicity of Seyfert 2 Active Galactic Nuclei (AGNs) and the intensity of the narrow emission-lines ratio $N2O2$=log([N II]$\lambda$6584/[O II]$\lambda$3727). The calibration of this relation was performed determining the metallicity ($Z$) of a sample of 58 AGNs through a diagram containing the observational data and the results of a grid of photoionization models obtained with the Cloudy code. We find the new $Z/Z_\odot$-$N2O2$ relation using the obtained metallicity values and the corresponding observational emission line intensities for each object of the sample. Read More

The CO-to-H$_2$ conversion factor ($X_\mathrm{CO}$) is known to correlate with the metallicity ($Z$). The dust abundance, which is related to the metallicity, is responsible for this correlation through dust shielding of dissociating photons and H$_2$ formation on dust surfaces. In this paper, we investigate how the relation between dust-to-gas ratio and metallicity ($\mathcal{D}$--$Z$ relation) affects the H$_2$ and CO abundances (and $X_\mathrm{CO}$) of a `molecular' cloud. Read More

The velocity distribution of dark matter near the Earth is important for an accurate analysis of the signals in terrestrial detectors. This distribution is typically extracted from numerical simulations. Here we address the possibility of deriving the velocity distribution function analytically. Read More

We present 450 and 850 micron submillimetre continuum observations of the IC5146 star-forming region taken as part of the JCMT Gould Belt Survey. We investigate the location of bright submillimetre (clumped) emission with the larger-scale molecular cloud through comparison with extinction maps, and find that these denser structures correlate with higher cloud column density. Ninety-six individual submillimetre clumps are identified using FellWalker and their physical properties are examined. Read More

With a high value of heliocentric radial velocity, a retrograde orbit, and being suspected to have an extragalactic origin, NGC 3201 is an interesting globular cluster for kinematical studies. Our purpose is to calculate the relative proper motions (PMs) and membership probability for the stars in the wide region of globular cluster NGC 3201. Proper motion based membership probabilities are used to isolate the cluster sample from the field stars. Read More

Measurements of element abundances in galaxies from astrophysical spectroscopy depend sensitively on the atomic data used. With the goal of making the latest atomic data accessible to the community, we present a compilation of selected atomic data for resonant absorption lines at wavelengths longward of 911.753 {\AA} (the \ion{H}{1} Lyman limit), for key heavy elements (heavier than atomic number 5) of astrophysical interest. Read More

The total mass M_GCS in the globular cluster (GC) system of a galaxy is empirically a near-constant fraction of the total mass M_h = M_bary + M_dark of the galaxy, across a range of 10^5 in galaxy mass. This trend is radically unlike the strongly nonlinear behavior of total stellar mass M_star versus M_h. We discuss extensions of this trend to two more extreme situations: (a) entire clusters of galaxies, and (b) the Ultra-Diffuse Galaxies (UDGs) recently discovered in Coma and elsewhere. Read More

Here we present positions and radial velocities for over 4000 globular clusters (GCs) in 27 nearby early-type galaxies from the SLUGGS survey. The SLUGGS survey is designed to be representative of elliptical and lenticular galaxies in the stellar mass range 10 $<$ log M$_{\ast}$/M$_{\odot}$ $<$ 11.7. Read More

We present a new non-parametric Jeans code, GravSphere, that recovers the density $\rho(r)$ and velocity anisotropy $\beta(r)$ of spherical stellar systems, assuming only that they are in a steady-state. Using a large suite of mock data, we confirm that with only line-of-sight velocity data, GravSphere provides a good estimate of the density at the projected stellar half mass radius, $\rho(R_{1/2})$, but is not able to measure $\rho(r)$ or $\beta(r)$, even with 10,000 tracer stars. We then test three popular methods for breaking this $\rho-\beta$ degeneracy: using multiple populations with different $R_{1/2}$; using higher order `Virial Shape Parameters' (VSPs); and including proper motion data. Read More

Magnetic fields are essential to fully understand the interstellar medium (ISM) and its role in the disk-halo interface of galaxies is still poorly understood. Star formation is known to expel hot gas vertically into the halo and these outflows have important consequences for mean-field dynamo theory in that they can be efficient in removing magnetic helicity. We perform new observations of the nearby face-on spiral galaxy NGC 628 with the Karl G. Read More

Mergers of galaxies are thought to cause significant gas inflows to the inner parsecs, which can activate rapid accretion onto supermassive black holes (SMBHs), giving rise to Active Galactic Nuclei (AGN). During a significant fraction of this process, SMBHs are predicted to be enshrouded by gas and dust. Studying 52 galactic nuclei in infrared-selected local Luminous and Ultra-luminous infrared galaxies in different merger stages in the hard X-ray band, where radiation is less affected by absorption, we find that the amount of material around SMBHs increases during the last phases of the merger. Read More

We present an analysis of archival ISO observations of pure-rotational lines of H2 in three pointings in the central 3 parsecs of the Galaxy: toward the Southwest region and Northeast region of the Galactic center Circumnuclear Disk, and toward the supermassive black hole Sgr A*. We detect pure rotational lines from 0-0 S(0) to S(13), as well as a number of rovibrationally excited transitions. From the pure rotational lines, we are able to describe the molecular gas with three discrete temperature components: a `hot' component between 500-600 K, a `hotter' component at 1250-1350 K, and a `hottest' component at > 2600 K. Read More

We propose a simple analytic model to understand when star formation is time-steady versus bursty on short (<~10 Myr) time scales in galaxies. Recent models explain the observed Kennicutt-Schmidt relation between star formation rate and gas surface densities in galaxies as resulting from a balance between stellar feedback and gravity. We argue that bursty star formation occurs when such an equilibrium cannot be stably sustained, and identify two regimes in which galaxy-scale star formation should be bursty: i) at high redshift (z>~1) for galaxies of all masses, and ii) at low masses (depending on gas fraction) for galaxies at any redshift. Read More

The distance to the planetary system OGLE-2015-BLG-0966L and the separation between the planet and its host star are ambiguous due to an ambiguity in the distance to the source star (Street et al. 2016). We attempt to break this degeneracy by measuring the systemic radial velocity of the source star measured from a spectrum taken while the source was highly magnified. Read More

We investigate the correlation of HCN 1-0 with dense gas mass in the Galactic center. We find that in general (on the ~10 pc size scale of individual molecular cloud cores) HCN 1-0 is well correlated with the dense molecular gas mass using a standard log-log relationship. However individual clouds in this environment show systematic deviations from this relationship that contribute to around 0. Read More

We report on subarcsecond observations of complex organic molecules (COMs) in the high-mass protostar IRAS20126+4104 with the Plateau de Bure Interferometer in its most extended configurations. In addition to the simple molecules SO, HNCO and H2-13CO, we detect emission from CH3CN, CH3OH, HCOOH, HCOOCH3, CH3OCH3, CH3CH2CN, CH3COCH3, NH2CN, and (CH2OH)2. SO and HNCO present a X-shaped morphology consistent with tracing the outflow cavity walls. Read More

The phase transition responsible for axion dark matter production can create large amplitude isocurvature perturbations which collapse into dense objects known as axion miniclusters. We use microlensing data from the EROS survey, and from recent observations with the Subaru Hyper Suprime Cam to place constraints on the minicluster scenario. We compute the microlensing event rate for miniclusters treating them as spatially extended objects with an extended mass function. Read More


Most galactic nuclei harbor a massive black hole (MBH), whose birth and evolution are closely linked to those of its host galaxy. The unique conditions near the MBH: high velocity and density in the steep potential of a massive singular relativistic object, lead to unusual modes of stellar birth, evolution, dynamics and death. A complex network of dynamical mechanisms, operating on multiple timescales, deflect stars to orbits that intercept the MBH. Read More

Blazars are active galactic nuclei (AGN) whose relativistic jets point nearly to the line of sight. Their compact radio structure can be imaged with very long baseline interferometry (VLBI) on parsec scales. Blazars at extremely high redshifts provide a unique insight into the AGN phenomena in the early Universe. Read More

We study the significance of mergers in the quenching of star formation in galaxies at z~1 by examining their color-mass distributions for different morphology types. We perform two-dimensional light profile fits to GOODS iz images of ~5000 galaxies and X-ray selected active galactic nucleus (AGN) hosts in the CANDELS/GOODS-north and south fields in the redshift range 0.7Read More

The origin and life-cycle of molecular clouds are still poorly constrained, despite their importance for understanding the evolution of the interstellar medium. We have carried out a systematic, homogeneous, spectroscopic survey of the inner Galactic plane, in order to complement the many continuum Galactic surveys available with crucial distance and gas-kinematic information. Our aim is to combine this data set with recent infrared to sub-millimetre surveys at similar angular resolutions. Read More

The Orion Nebula Cluster toward the HII region M42 is the most outstanding young cluster at the smallest distance 410pc among the rich high-mass stellar clusters. By newly analyzing the archival molecular data of the 12CO(J=1-0) emission at 21" resolution, we identified at least three pairs of complementary distributions between two velocity components at 8km/s and 13km/s. We present a hypothesis that the two clouds collided with each other and triggered formation of the high-mass stars, mainly toward two regions including the nearly ten O stars, theta1 Ori and theta2 Ori, in M42 and the B star, NU Ori, in M43. Read More

[Abridged] We present spectroscopic observations in H$_{2}$O, CO and related species with \textit{Herschel} HIFI and PACS, as well as ground-based follow-up with the JCMT and APEX in CO, HCO$^{+}$ and isotopologues, of a sample of 49 nearby ($d<$500\,pc) candidate protostars. These data are used to study the outflow and envelope properties of these sources. We also compile their continuum SEDs in order to constrain their physical properties. Read More

N-methylformamide, CH3NHCHO, may be an important molecule for interstellar pre-biotic chemistry because it contains a peptide bond. The rotational spectrum of the most stable trans conformer of CH3NHCHO is complicated by strong torsion-rotation interaction due to the low barrier of the methyl torsion. We use two absorption spectrometers in Kharkiv and Lille to measure the rotational spectra over 45--630 GHz. Read More

The evolution of main sequence binaries resided in the galactic centre is influenced a lot by the central super massive black hole (SMBH). Due to this perturbation, the stars in a dense environment are likely to experience mergers or collisions through secular or non-secular interactions. In this work, we study the dynamics of the stellar binaries at galactic center, perturbed by another distant SMBH. Read More

We present the catalog of the KVN Calibrator Survey (KVNCS). This first part of the KVNCS is a single dish radio survey conducted at 22 (K band) and 43 GHz (Q band) simultaneously using the Korean VLBI Network (KVN) from 2009 to 2011. A total 2045 sources selected from the VLBA Calibrator Survey (VCS) with an extrapolated flux density limit of 100 mJy at K band. Read More

In hierarchical structure formation scenarios, merging galaxies are expected to be seen in different phases of their coalescence. Simulations suggest that simultaneous activity of the supermassive black holes (SMBHs) in the centres of the merging galaxies may be expected at kpc-scale separations. Currently, there are no direct observational methods which allow the selection of a large number of such dual active galactic nuclei (AGN) candidates. Read More