Gas vs. solid phase deuterated chemistry: HDCO and D$_2$CO in massive star-forming regions

The formation of deuterated molecules is favoured at low temperatures and high densities. Therefore, the deuteration fraction D$_{frac}$ is expected to be enhanced in cold, dense prestellar cores and to decrease after protostellar birth. Previous studies have shown that the deuterated forms of species such as N2H+ (formed in the gas phase) and CH3OH (formed on grain surfaces) can be used as evolutionary indicators and to constrain their dominant formation processes and time-scales. Formaldehyde (H2CO) and its deuterated forms can be produced both in the gas phase and on grain surfaces. However, the relative importance of these two chemical pathways is unclear. Comparison of the deuteration fraction of H2CO with respect to that of N2H+, NH3 and CH3OH can help us to understand its formation processes and time-scales. With the new SEPIA Band 5 receiver on APEX, we have observed the J=3-2 rotational lines of HDCO and D2CO at 193 GHz and 175 GHz toward three massive star forming regions hosting objects at different evolutionary stages: two High-mass Starless Cores (HMSC), two High-mass Protostellar Objects (HMPOs), and one Ultracompact HII region (UCHII). By using previously obtained H2CO J=3-2 data, the deuteration fractions HDCO/H2CO and D2CO/HDCO are estimated. Our observations show that singly-deuterated H2CO is detected toward all sources and that the deuteration fraction of H2CO increases from the HMSC to the HMPO phase and then sharply decreases in the latest evolutionary stage (UCHII). The doubly-deuterated form of H2CO is detected only in the earlier evolutionary stages with D2CO/H2CO showing a pattern that is qualitatively consistent with that of HDCO/H2CO, within current uncertainties. Our initial results show that H2CO may display a similar D$_{frac}$ pattern as that of CH3OH in massive young stellar objects. This finding suggests that solid state reactions dominate its formation.

Comments: 7 pages, 2 figures, accepted for publication in A&A Letters

Similar Publications

The recent observations of rippled structures on the surface of the Orion molecular cloud (Bern\'{e} et al. 2010), have been attributed to the Kelvin-Helmholtz (KH) instability. The wavelike structures which have mainly seen near star-forming regions taking place at the interface between the hot diffuse gas, which is ionized by massive stars, and the cold dense molecular clouds. Read More


We perform controlled N-body simulations of disc galaxies growing within live dark matter (DM) haloes to present-day galaxies that contain both thin and thick discs. We consider two types of models: a) thick disc initial conditions to which stars on near-circular orbits are continuously added over ~10 Gyr and b) models in which the birth velocity dispersion of stars decreases continuously over the same timescale. We show that both schemes produce double-exponential vertical profiles similar to that of the Milky Way (MW). Read More


This study focuses on the formation of two molecules of astrobiological importance - glycolaldehyde (HC(O)CH2OH) and ethylene glycol (H2C(OH)CH2OH) - by surface hydrogenation of CO molecules. Our experiments aim at simulating the CO freeze-out stage in interstellar dark cloud regions, well before thermal and energetic processing become dominant. It is shown that along with the formation of H2CO and CH3OH - two well established products of CO hydrogenation - also molecules with more than one carbon atom form. Read More


We have identified several tens of extremely metal-poor star candidates from SDSS and LAMOST, which we follow-up with the 4.2m WHT telescope to confirm their metallicity.We follow a robust two-step methodology. Read More


The surface formation of NH3 and its deuterated isotopologues - NH2D, NHD2, and ND3 - is investigated at low temperatures through the simultaneous addition of hydrogen and deuterium atoms to nitrogen atoms in CO-rich interstellar ice analogues. The formation of all four ammonia isotopologues is only observed up to 15 K, and drops below the detection limit for higher temperatures. Differences between hydrogenation and deuteration yields result in a clear deviation from a statistical distribution in favour of deuterium enriched species. Read More


Solid state astrochemical reaction pathways have the potential to link the formation of small nitrogen-bearing species, like NH3 and HNCO, and prebiotic molecules, specifically amino acids. To date, the chemical origin of such small nitrogen containing species is still not well understood, despite the fact that ammonia is an abundant constituent of interstellar ices toward young stellar objects and quiescent molecular clouds. This is mainly because of the lack of dedicated laboratory studies. Read More


Hydroxylamine (NH2OH) is one of the potential precursors of complex pre-biotic species in space. Here we present a detailed experimental study of hydroxylamine formation through nitric oxide (NO) surface hydrogenation for astronomically relevant conditions. The aim of this work is to investigate hydroxylamine formation efficiencies in polar (water-rich) and non-polar (carbon monoxide-rich) interstellar ice analogues. Read More


Stationary stellar systems with radially elongated orbits are subject to radial orbit instability -- an important phenomenon that structures galaxies. Antonov (1973) presented a formal proof of the instability for spherical systems in the limit of purely radial orbits. However, such spheres have highly inhomogeneous density distributions with singularity $\sim 1/r^2$, resulting in an inconsistency in the proof. Read More


Recently, a deviation of the Gaia TGAS parallaxes from the asteroseismic ones for giants was found. We show that for parallaxes $\varpi<1.5$ mas it can be explained by a selection effect in favour of bright and luminous giants in the Tycho-2 and TGAS catalogues. Read More


Chemical abundances are presented for 19 elements in a sample of 63 red giants in the Carina dwarf spheroidal galaxy (dSph), based on homogeneous 1D/LTE model atmosphere analyses of our own observations (32 stars) and data available in the literature (a further 31 independent stars). The (Fe) metallicity and [$\alpha$/Fe] distribution functions have mean values and dispersions of -1.59 and 0. Read More