Secular chaotic dynamics in hierarchical quadruple systems, with applications to hot Jupiters in stellar binaries and triples

Hierarchical quadruple systems arise naturally in stellar binaries and triples that harbor planets. Examples are hot Jupiters (HJs) in stellar triple systems, and planetary companions to HJs in stellar binaries. The secular dynamical evolution of these systems is generally complex, with secular chaotic motion possible in certain parameter regimes. The latter can lead to extremely high eccentricities and, therefore, strong interactions such as efficient tidal evolution. These interactions are believed to play an important role in the formation of HJs through high-eccentricity migration. Nevertheless, a deeper understanding of the secular dynamics of these systems is still lacking. Here we study in detail the secular dynamics of a special case of hierarchical quadruple systems in either the `2+2' or `3+1' configurations. We show how the equations of motion can be cast in a form representing a perturbed hierarchical three-body system, in which the outer orbital angular momentum vector is precessing steadily around a fixed axis. In this case, we show that eccentricity excitation can be significantly enhanced when the precession period is comparable to the Lidov-Kozai oscillation timescale of the inner orbit. This arises from an induced large mutual inclination between the inner and outer orbits driven by the precession of the outer orbit, even if the initial mutual inclination is small. We present a simplified semi-analytic model which captures the essential dynamics.

Comments: Submitted to MNRAS. 15 pages, 9 figures

Similar Publications

We consider the geometric Titius-Bode rule for the semimajor axes of planetary orbits. We derive an equivalent rule for the midpoints of the segments between consecutive orbits along the radial direction and we interpret it physically in terms of the work done in the gravitational field of the Sun by particles whose orbits are perturbed around each planetary orbit. On such energetic grounds, it is not surprising that some exoplanets in multiple-planet extrasolar systems obey the same relation. Read More


In this chapter we summarize current knowledge of the internal structure of giant planets. We concentrate on the importance of heavy elements and their role in determining the planetary composition and internal structure, in planet formation, and during the planetary long-term evolution. We briefly discuss how internal structure models are derived, present the possible structures of the outer planets in the Solar System, and summarise giant planet formation and evolution. Read More


Asteroid families are valuable source of information to many asteroid-related re- searches, assuming a reliable list of their members could be obtained. However, as the number of known asteroids increases fast it becomes more and more difficult to obtain robust list of members of an asteroid family. Here we are proposing a new approach to deal with the problem, based on the well known Hierarchical Clustering Method (HCM). Read More


2017May
Affiliations: 1Instituto de Astrofisica de Andalucia, 2LESIA-Observatoire de Paris, CNRS, UPMC Univ. Paris 6, Univ. Paris-Diderot, France, 3Aix Marseille Universite, CNRS, LAM, France, 4Astrophysics Research Centre, Queen's University Belfast, United Kingdom, 5Max-Planck-Institut fur extraterrestrische Physik, 6Instituto de Astrofisica de Andalucia, 7Konkoly Observatory of the Hungarian Academy of Sciences, Hungary, 8Max-Planck-Institut fur extraterrestrische Physik, 9Space Telescope Science Institute, USA, 10Instituto de Astrofisica de Andalucia, 11LESIA-Observatoire de Paris, CNRS, UPMC Univ. Paris 6, Univ. Paris-Diderot, France, 12Aix Marseille Universite, CNRS, LAM, France, 13Lowell Observatory, USA

Time series observations of the dwarf planet Haumea and the Plutinos 2003VS2 and 2003AZ84 with Herschel/PACS are presented in this work. Thermal emission of these trans-Neptunian objects were acquired as part of the TNOs are Cool Herschel Space Observatory key programme. We search for the thermal light curves at 100 and 160um of Haumea and 2003AZ84, and at 70 and 160um for 2003VS2 by means of photometric analysis of the PACS data. Read More


Lucus Planum, extending for a radius of approximately 500 km around 181{\deg} E, 5{\deg} S, is part of the Medusae Fossae Formation (MFF), a set of several discontinuous deposits of fine-grained, friable material straddling across the Martian highland-lowland boundary. The MFF has been variously hypothesized to consist of pyroclastic flows, pyroclastic airfall, paleopolar deposits, or atmospherically-deposited icy dust driven by climate cycles. MARSIS, a low-frequency subsurface-sounding radar carried by ESA's Mars Express, acquired 238 radar swaths across Lucus Planum, providing sufficient coverage for the study of its internal structure and dielectric properties. Read More


For the first time, spectral signs of subtle coma activity were observed for four main-belt primitive asteroids (145) Adeona, (704) Interamnia, (779) Nina, and (1474) Beira around their perihelion distances in September 2012, which were interpreted as manifestations of the sublimation of H2O ice in/under the surface matter (Busarev et al., 2015a, 2015b). We confirm the phenomenon for Nina when it approached perihelion in September 2016. Read More


We examine in detail 15 Babylonian observations of lunar appulses and occultations made between 80 and 419 BC for the purpose of setting useful limits on Earth's clock error, as quantified by $\Delta$T, the difference between Terrestrial Time and Universal time. Our results are generally in agreement with reconstructions of $\Delta$T using untimed solar eclipse observations from the same period. We suggest a revised version of the simple quadratic fit to $\Delta$T in light of the new results. Read More


Collisional fragmentation is shown to not be a barrier to rocky planet formation at small distances from the host star. Simple analytic arguments demonstrate that rocky planet formation via collisions of homogeneous gravity-dominated bodies is possible down to distances of order the Roche radius ($r_\mathrm{Roche}$). Extensive N-body simulations that include plausible models for fragmentation and merging of gravity-dominated bodies confirm this conclusion and demonstrate that rocky planet formation is possible down to ${\sim}$1. Read More


The TRAPPIST-1, Proxima Centauri, and LHS 1140 systems are the most exciting prospects for future follow-up observations of potentially inhabited planets. All orbit nearby M-stars and are likely tidally locked in 1:1 spin-orbit states, which motivates the consideration of the effects that tidal locking might have on planetary habitability. On Earth, periods of global glaciation (snowballs) may have been essential for habitability and remote signs of life (biosignatures) because they are correlated with increases in the complexity of life and in the atmospheric oxygen concentration. Read More