BB_twtr at SemEval-2017 Task 4: Twitter Sentiment Analysis with CNNs and LSTMs

In this paper we describe our attempt at producing a state-of-the-art Twitter sentiment classifier using Convolutional Neural Networks (CNNs) and Long Short Term Memory (LSTMs) networks. Our system leverages a large amount of unlabeled data to pre-train word embeddings. We then use a subset of the unlabeled data to fine tune the embeddings using distant supervision. The final CNNs and LSTMs are trained on the SemEval-2017 Twitter dataset where the embeddings are fined tuned again. To boost performances we ensemble several CNNs and LSTMs together. Our approach achieved first rank on all of the five English subtasks amongst 40 teams.

Comments: Published in Proceedings of SemEval-2017, 8 pages

Similar Publications

Automatic affect recognition is a challenging task due to the various modalities emotions can be expressed with. Applications can be found in many domains including multimedia retrieval and human computer interaction. In recent years, deep neural networks have been used with great success in determining emotional states. Read More

This paper aims to catalyze the discussions about text feature extraction techniques using neural network architectures. The research questions discussed in the paper focus on the state-of-the-art neural network techniques that have proven to be useful tools for language processing, language generation, text classification and other computational linguistics tasks. Read More

Neural machine translation (NMT) heavily relies on an attention network to produce a context vector for each target word prediction. In practice, we find that context vectors for different target words are quite similar to one another and therefore are insufficient in discriminatively predicting target words. The reason for this might be that context vectors produced by the vanilla attention network are just a weighted sum of source representations that are invariant to decoder states. Read More

Word embeddings provide point representations of words containing useful semantic information. We introduce multimodal word distributions formed from Gaussian mixtures, for multiple word meanings, entailment, and rich uncertainty information. To learn these distributions, we propose an energy-based max-margin objective. Read More

This paper describes the Duluth system that participated in SemEval-2017 Task 6 #HashtagWars: Learning a Sense of Humor. The system participated in Subtasks A and B using N-gram language models, ranking highly in the task evaluation. This paper discusses the results of our system in the development and evaluation stages and from two post-evaluation runs. Read More

This paper describes the Duluth systems that participated in SemEval-2017 Task 7 : Detection and Interpretation of English Puns. The Duluth systems participated in all three subtasks, and relied on methods that included word sense disambiguation and measures of semantic relatedness. Read More

We introduce a neural semantic parser which is interpretable and scalable. Our model converts natural language utterances to intermediate, domain-general natural language representations in the form of predicate-argument structures, which are induced with a transition system and subsequently mapped to target domains. The semantic parser is trained end-to-end using annotated logical forms or their denotations. Read More

Existing question answering methods infer answers either from a knowledge base or from raw text. While knowledge base (KB) methods are good at answering compositional questions, their performance is often affected by the incompleteness of the KB. Au contraire, web text contains millions of facts that are absent in the KB, however in an unstructured form. Read More

Sequence-to-sequence models have shown strong performance across a broad range of applications. However, their application to parsing and generating text usingAbstract Meaning Representation (AMR)has been limited, due to the relatively limited amount of labeled data and the non-sequential nature of the AMR graphs. We present a novel training procedure that can lift this limitation using millions of unlabeled sentences and careful preprocessing of the AMR graphs. Read More

Words can be represented by composing the representations of subword units such as word segments, characters, and/or character n-grams. While such representations are effective and may capture the morphological regularities of words, they have not been systematically compared, and it is not understood how they interact with different morphological typologies. On a language modeling task, we present experiments that systematically vary (1) the basic unit of representation, (2) the composition of these representations, and (3) the morphological typology of the language modeled. Read More