Using Mise-En-Scène Visual Features based on MPEG-7 and Deep Learning for Movie Recommendation

Item features play an important role in movie recommender systems, where recommendations can be generated by using explicit or implicit preferences of users on traditional features (attributes) such as tag, genre, and cast. Typically, movie features are human-generated, either editorially (e.g., genre and cast) or by leveraging the wisdom of the crowd (e.g., tag), and as such, they are prone to noise and are expensive to collect. Moreover, these features are often rare or absent for new items, making it difficult or even impossible to provide good quality recommendations. In this paper, we show that user's preferences on movies can be better described in terms of the mise-en-sc\`ene features, i.e., the visual aspects of a movie that characterize design, aesthetics and style (e.g., colors, textures). We use both MPEG-7 visual descriptors and Deep Learning hidden layers as example of mise-en-sc\`ene features that can visually describe movies. Interestingly, mise-en-sc\`ene features can be computed automatically from video files or even from trailers, offering more flexibility in handling new items, avoiding the need for costly and error-prone human-based tagging, and providing good scalability. We have conducted a set of experiments on a large catalogue of 4K movies. Results show that recommendations based on mise-en-sc\`ene features consistently provide the best performance with respect to richer sets of more traditional features, such as genre and tag.

Comments: 8 pages, 3 figures

Similar Publications

Complex networks have emerged as a simple yet powerful framework to represent and analyze a wide range of complex systems. The problem of ranking the nodes and the edges in complex networks is critical for a broad range of real-world problems because it affects how we access online information and products, how success and talent are evaluated in human activities, and how scarce resources are allocated by companies and policymakers, among others. This calls for a deep understanding of how existing ranking algorithms perform, and which are their possible biases that may impair their effectiveness. Read More

We design a recommender system for research papers based on topic-modeling. The users feedback to the results is used to make the results more relevant the next time they fire a query. The user's needs are understood by observing the change in the themes that the user shows a preference for over time. Read More

As entity type systems become richer and more fine-grained, we expect the number of types assigned to a given entity to increase. However, most fine-grained typing work has focused on datasets that exhibit a low degree of type multiplicity. In this paper, we consider the high-multiplicity regime inherent in data sources such as Wikipedia that have semi-open type systems. Read More

We propose a novel, semi-supervised approach towards domain taxonomy induction from an input vocabulary of seed terms. Unlike most previous approaches, which typically extract direct hypernym edges for terms, our approach utilizes a novel probabilistic framework to extract hypernym subsequences. Taxonomy induction from extracted subsequences is cast as an instance of the minimum-cost flow problem on a carefully designed directed graph. Read More

We propose a simple, yet effective, approach towards inducing multilingual taxonomies from Wikipedia. Given an English taxonomy, our approach leverages the interlanguage links of Wikipedia followed by character-level classifiers to induce high-precision, high-coverage taxonomies in other languages. Through experiments, we demonstrate that our approach significantly outperforms the state-of-the-art, heuristics-heavy approaches for six languages. Read More

Efficient Nearest Neighbor (NN) search in high-dimensional spaces is a foundation of many multimedia retrieval systems. Because it offers low responses times, Product Quantization (PQ) is a popular solution. PQ compresses high-dimensional vectors into short codes using several sub-quantizers, which enables in-RAM storage of large databases. Read More

Dynamic Networks are a popular way of modeling and studying the behavior of evolving systems. However, their analysis constitutes a relatively recent subfield of Network Science, and the number of available tools is consequently much smaller than for static networks. In this work, we propose a method specifically designed to take advantage of the longitudinal nature of dynamic networks. Read More

The problem of ranking a set of items is fundamental in today's data-driven world. Ranking algorithms lie at the core of applications such as search engines, news feeds, and recommendation systems. However, recent events have pointed to the fact that algorithmic bias in rankings, which results in decreased fairness or diversity in the type of content presented, can promote stereotypes and propagate injustices. Read More

Matrix completion models are among the most common formulations of recommender systems. Recent works have showed a boost of performance of these techniques when introducing the pairwise relationships between users/items in the form of graphs, and imposing smoothness priors on these graphs. However, such techniques do not fully exploit the local stationarity structures of user/item graphs, and the number of parameters to learn is linear w. Read More

We tackle the challenge of topic classification of tweets in the context of analyzing a large collection of curated streams by news outlets and other organizations to deliver relevant content to users. Our approach is novel in applying distant supervision based on semi-automatically identifying curated streams that are topically focused (for example, on politics, entertainment, or sports). These streams provide a source of labeled data to train topic classifiers that can then be applied to categorize tweets from more topically-diffuse streams. Read More