Unconventional Localization Prior to Wrinkles and Controllable Surface Patterns of Film Substrate Bilayers Through Patterned Defects in Substrate

A novel bilayer is introduced, consisting of a stiff film adhered to a soft substrate with patterned holes beneath the film and substrate interface. To uncover the transition of surface patterns, two dimensional plane strain simulations are performed on the defected bilayer subjected to uniaxial compression. Although the substrate is considered as the linear elastic material, the presence of defects can directly trigger the formation of locally ridged and then folding configurations from flat surface with a relatively small compressive strain. It is followed by the coexisting phases of folds and wrinkles under further overall compression. This phase transition reverses the traditional transition of wrinkle to ridge or fold for defect free substrates. It is also found that the onset of initial bifurcation is highly dependent on the spatial configuration and geometries of holes, since the interaction of defects allows more strain relief mechanisms beyond wrinkling. Furthermore, a rich diversity of periodic surface topologies, including overall waves, localizations, saw like and coexisting features of folds and wrinkles can be obtained by varying the diameter, depth and spacing of holes as well as compressive strain, which provides a potential approach to engineer various surface patterns for applications.


Similar Publications

We numerically study the jamming transition of polydisperse spheres in three dimensions. We use an efficient thermalisation algorithm for the equilibrium hard sphere fluid and generate amorphous jammed packings over a range of critical jamming densities that is about three times broader than in previous studies. This allows us to reexamine a wide range of structural properties characterizing the jamming transition. Read More


In this paper we establish a connection between the onset temperature of glassy dynamics with the change in the entropy for a wide range of model systems. We identify the crossing temperature of pair and excess entropies as the onset temperature. Below the onset temperature, the residual multiparticle entropy(RMPE), the difference between excess and pair entropies, becomes positive. Read More


The formation of self-organised structures that resist shear deformation have been discussed in the context of shear jamming and thickening[1-3], with frictional forces playing a key role. However, shear induces geometric features necessary for jamming even in frictionless packings[4]. We analyse conditions for jamming in such assemblies by solving force and torque balance conditions for their contact geometry. Read More


Shearing transitions of multi-layer molecularly thin-film lubrication systems in variations of the film-substrate coupling strength and the load are studied by using a multiscale method. Three kinds of the interlayer slips found in decreasing the coupling strength are in qualitative agreement with experimental results. Although tribological behaviors are almost insensitive to the smaller coupling strength, they and the effective film thickness are enlarged more and more as the larger one increases. Read More


Fragility, quantifying the rapidity of variation of relaxation times, is analysed for a series of model glass formers, which differ in the softness of their interparticle interactions. In an attempt to rationalize experimental observations in colloidal suspensions that softer interactions lead to stronger (less fragile) glass formers, we study the variation of relaxation dynamics with density, rather than temperature, as a control parameter. We employ density temperature scaling, analyzed in recent studies, to address the question. Read More


Chiral heteropolymers such as larger globular proteins can simultaneously support multiple length scales. The interplay between different scales brings about conformational diversity, and governs the structure of the energy landscape. Multiple scales produces also complex dynamics, which in the case of proteins sustains live matter. Read More


The origins of rapid dynamical slow down in glass forming liquids in the growth of static length scales, possibly associated with identifiable structural ordering, is a much debated issue. Growth of medium range crystalline order (MRCO) has been observed in various model systems to be associated with glassy behaviour. Such observations raise the question about the eventual state reached by a glass former, if allowed to relax for sufficiently long times. Read More


We develop two-dimensional Brownian dynamics simulations to examine the motion of disks under thermal fluctuations and Hookean forces. Our simulations are designed to be experimental-like, since the experimental conditions define the available time-scales which characterize the solution of Langevin equations. To define the fluid model and methodology, we explain the basics of the theory of Brownian motion applicable to quasi-twodimensional diffusion of optically-trapped microspheres. Read More


Rheology of cohesive dilute granular gases is theoretically and numerically studied. The flow curve between the shear viscosity and the shear rate is derived from the inelastic Boltzmann equation for particles under the influence of square-well potentials in a simple uniform shear state. It is found that the stable uniformly sheared state only exists above a critical shear rate in which the viscosity is almost identical to that for uniformly sheared hard core granular particles. Read More


Establishing precise control over the shape and the interactions of the microscopic building blocks is essential for design of macroscopic soft materials with novel structural, optical and mechanical properties. Here, we demonstrate robust assembly of DNA origami filaments into cholesteric liquid crystals, 1D supramolecular twisted ribbons and 2D colloidal membranes. The exquisite control afforded by the DNA origami technology establishes a quantitative relationship between the microscopic filament structure and the macroscopic cholesteric pitch. Read More