Scaling from gauge and scalar radiation in Abelian Higgs string networks

We investigate cosmic string networks in the Abelian Higgs model using data from a campaign of large-scale numerical simulations on lattices of up to $4096^3$ grid points. We observe scaling or self-similarity of the networks over a wide range of scales, and estimate the asymptotic values of the mean string separation in horizon length units $\dot{\xi}$ and of the mean square string velocity $\bar v^2$ in the continuum and large time limits. The scaling occurs because the strings lose energy into classical radiation of the scalar and gauge fields of the Abelian Higgs model. We quantify the energy loss with a dimensionless radiative efficiency parameter, and show that it does not vary significantly with lattice spacing or string separation. This implies that the radiative energy loss underlying the scaling behaviour is not a lattice artefact, and justifies the extrapolation of measured network properties to large times for computations of cosmological perturbations. We also show that the core growth method, which increases the defect core width with time to extend the dynamic range of simulations, does not introduce significant systematic error. We compare $\dot{\xi}$ and $\bar v^2$ to values measured in simulations using the Nambu-Goto approximation, finding that the latter underestimate the mean string separation by about 25%, and overestimate $\bar v^2$ by about 10%. The scaling of the string separation implies that string loops decay by the emission of massive radiation within a Hubble time in field theory simulations, in contrast to the Nambu-Goto scenario which neglects this energy loss mechanism. String loops surviving for only one Hubble time emit much less gravitational radiation than in the Nambu-Goto scenario, and are consequently subject to much weaker gravitational wave constraints on their tension.

Comments: 19 pages, 12 figures

Similar Publications

General relativistic imprints on the galaxy bispectrum arise from both dynamical and observational (or projection) effects. The lightcone projection effects include local contributions from Doppler and gravitational potential terms, as well as lensing and other integrated contributions. We recently presented for the first time, the correction to the galaxy bispectrum from all local lightcone projection effects up to second order in perturbations. Read More


Caustics form in Lagrangian fluids when fluid elements cross and multi-stream regions form. For low-dimensional Lagrangian fluids, the caustics have been classified by catastrophe theory. In the case of potential flow, for one- and two-dimensional fluids, Aronl'd et al. Read More


In a model of the late-time cosmic acceleration within the framework of generalized Proca theories, there exists a de Sitter attractor preceded by the dark energy equation of state $w_{\rm DE}=-1-s$, where $s$ is a positive constant. We run the Markov-Chain-Monte-Carlo code to confront the model with the observational data of Cosmic Microwave Background (CMB), baryon acoustic oscillations, supernovae type Ia, and local measurements of the Hubble expansion rate for the background cosmological solutions and obtain the bound $s=0.254^{{}+ 0. Read More


We study how the gas in a sample of galaxies (M* > 10e9 Msun) in clusters, obtained in a cosmological simulation, is affected by the interaction with the intra-cluster medium (ICM). The dynamical state of each elemental parcel of gas is studied using the total energy. At z ~ 2, the galaxies in the simulation are evenly distributed within clusters, moving later on towards more central locations. Read More


2017Mar

Previous studies have found our velocity in the rest frame of radio galaxies at high redshift to be substantially larger than that inferred from the CMB temperature dipole anisotropy. We construct a full sky catalogue NVSUMSS, by merging the NVSS and SUMSS catalogues and removing local sources by various means including cross-correlating with the 2MRS catalogue. We take into account both aberration and Doppler boost to deduce our velocity from the hemispherical number count asymmetry, as well as via a 3-dimensional linear estimator. Read More


Cosmic rays (CRs) govern the energetics of present-day galaxies and might have also played a pivotal role during the Epoch of Reionization. In particular, energy deposition by low-energy ($E \lesssim 10$ MeV) CRs accelerated by the first supernovae, might have heated and ionized the neutral intergalactic medium (IGM) well before ($z \approx 20$) it was reionized, significantly adding to the similar effect by X-rays or dark matter annihilations. Using a simple, but physically motivated reionization model, and a thorough implementation of CR energy losses, we show that CRs contribute negligibly to IGM ionization, but heat it substantially, raising its temperature by $\Delta T=10-200$ K by $z=10$, depending on the CR injection spectrum. Read More


We discuss a dark family of lepton-like particles with their own "private" gauge bosons under a local SU'(2)xU'(1) symmetry. The Higgs doublet would couple in the standard way to the left-handed SU'(2) doublet and right-handed singlets but not to the extra gauge bosons. This reduces the electroweak-type gauge symmetries from SU'(2)xU'(1)xSU_w(2)xU_Y(1) to the diagonal (vector-like) SU(2)xU(1). Read More


By far cosmology is one of the most exciting subject to study, even more so with the current bulk of observations we have at hand. These observations might indicate different kinds of doomsdays, if dark energy follows certain patterns. Two of these doomsdays are the Little Rip (LR) and Little Sibling of the Big Rip (LSBR). Read More


In a wide class of cosmological models, a positive cosmological constant drives cosmological evolution toward an asymptotically de Sitter phase. Here we connect this behavior to the increase of entropy over time, based on the idea that de Sitter space is a maximum-entropy state. We prove a cosmic no-hair theorem for Robertson-Walker and Bianchi I spacetimes by assuming that the generalized entropy of a Q-screen ("quantum" holographic screen), in the sense of the cosmological version of the Generalized Second Law conjectured by Bousso and Engelhardt, increases up to a finite maximum value, which we show coincides with the de Sitter horizon entropy. Read More