# A Passivity-Based Distributed Reference Governor for Constrained Robotic Networks

This paper focuses on a passivity-based distributed reference governor (RG) applied to a pre-stabilized mobile robotic network. The novelty of this paper lies in the method used to solve the RG problem, where a passivity-based distributed optimization scheme is proposed. In particular, the gradient descent method minimizes the global objective function while the dual ascent method maximizes the Hamiltonian. To make the agents converge to the agreed optimal solution, a proportional-integral consensus estimator is used. This paper proves the convergence of the state estimates of the RG to the optimal solution through passivity arguments, considering the physical system static. Then, the effectiveness of the scheme considering the dynamics of the physical system is demonstrated through simulations and experiments.

**Comments:**8 pages, International Federation of Automatic Conference 2017, 8 figures

## Similar Publications

This thesis is in the area called computational social choice which is an intersection area of algorithms and social choice theory. Read More

Motivated by economic dispatch and linearly-constrained resource allocation problems, this paper proposes a novel Distributed Approx-Newton algorithm that approximates the standard Newton optimization method. A main property of this distributed algorithm is that it only requires agents to exchange constant-size communication messages. The convergence of this algorithm is discussed and rigorously analyzed. Read More

We consider the problem of controlling the spatiotemporal probability distribution of a robotic swarm that evolves according to a reflected diffusion process, using the space- and time-dependent drift vector field parameter as the control variable. In contrast to previous work on control of the Fokker-Planck equation, a zero-flux boundary condition is imposed on the partial differential equation that governs the swarm probability distribution, and only bounded vector fields are considered to be admissible as control parameters. Under these constraints, we show that any initial probability distribution can be transported to a target probability distribution under certain assumptions on the regularity of the target distribution. Read More

In this paper, we focus on applications in machine learning, optimization, and control that call for the resilient selection of a few elements, e.g. features, sensors, or leaders, against a number of adversarial denial-of-service attacks or failures. Read More

Recently the dynamics of signed networks, where the ties among the agents can be both positive (attractive) or negative (repulsive) have attracted substantial attention of the research community. Examples of such networks are models of opinion dynamics over signed graphs, recently introduced by Altafini (2012,2013) and extended to discrete-time case by Meng et al. (2014). Read More

In this paper we consider the problem of identifying intersections between two sets of d-dimensional axis-parallel rectangles. This is a common problem that arises in many agent-based simulation studies, and is of central importance in the context of High Level Architecture (HLA), where it is at the core of the Data Distribution Management (DDM) service. Several realizations of the DDM service have been proposed; however, many of them are either inefficient or inherently sequential. Read More

This paper presents a novel approach for localising a GPS (Global Positioning System)-denied Unmanned Aerial Vehicle (UAV) with the aid of a GPS-equipped UAV in three-dimensional space. The GPS-equipped UAV makes discrete-time broadcasts of its global coordinates. The GPS-denied UAV simultaneously receives the broadcast and takes direction of arrival (DOA) measurements towards the origin of the broadcast in its local coordinate frame (obtained via an inertial navigation system (INS)). Read More

This paper presents the first ever approach for solving \emph{continuous-observation} Decentralized Partially Observable Markov Decision Processes (Dec-POMDPs) and their semi-Markovian counterparts, Dec-POSMDPs. This contribution is especially important in robotics, where a vast number of sensors provide continuous observation data. A continuous-observation policy representation is introduced using Stochastic Kernel-based Finite State Automata (SK-FSAs). Read More

Robust environment perception is essential for decision-making on robots operating in complex domains. Intelligent task execution requires principled treatment of uncertainty sources in a robot's observation model. This is important not only for low-level observations (e. Read More