WKB solutions of difference equations and reconstruction by the topological recursion

The purpose of this article is to analyze the connection between Eynard-Orantin topological recursion and formal WKB solutions of a $\hbar$-difference equation: $\Psi(x+\hbar)=\left(e^{\hbar\frac{d}{dx}}\right) \Psi(x)=L(x;\hbar)\Psi(x)$ with $L(x;\hbar)\in GL_2( (\mathbb{C}(x))[\hbar])$. In particular, we extend the notion of determinantal formulas and topological type property proposed for formal WKB solutions of $\hbar$-differential systems to this setting. We apply our results to a specific $\hbar$-difference system associated to the quantum curve of the Gromov-Witten invariants of $\mathbb{P}^1$ for which we are able to prove that the correlation functions are reconstructed from the Eynard-Orantin differentials computed from the topological recursion applied to the spectral curve $y=\cosh^{-1}\frac{x}{2}$. Finally, identifying the large $x$ expansion of the correlation functions, proves a recent conjecture made by B. Dubrovin and D. Yang regarding a new generating series for Gromov-Witten invariants of $\mathbb{P}^1$.

Comments: 41 pages, 2 figures

Similar Publications

The aim of this paper is to present a linear viscoelastic model based on Prabhakar fractional operators. In particular, we propose a modification of the classical fractional Maxwell model, in which we replace the Caputo derivative with the Prabhakar one. Furthermore, we also discuss how to recover a formal equivalence between the new model and the known classical models of linear viscoelasticity by means of a suitable choice of the parameters in the Prabhakar derivative. Read More


We study quantum integrable models solvable by the nested algebraic Bethe ansatz and possessing $\mathfrak{gl}(m|n)$-invariant $R$-matrix. We compute the norm of the Hamiltonian eigenstates. Using the notion of a generalized model we show that the square of the norm obeys a number of properties that uniquely fix it. Read More


We consider the gap creation problem in an antidot graphene lattice, i.e. a sheet of graphene with periodically distributed obstacles. Read More


Real non-symmetric matrices may have either real or complex conjugate eigenvalues. These matrices can be seen to be pseudo-symmetric as $\eta M \eta^{-1} = M^t$, where the metric $\eta$ could be secular (a constant matrix) or depending upon the matrix elements of $M$. Here, we construct ensembles of a large number $N$ of pseudo-symmetric $n \times n$ ($n$ large) matrices using ${\cal N}$ $(n(n+1)/2 \le {\cal N} \le n^2)$ independent and identically distributed (iid) random numbers as their elements. Read More


We use the coordinate Bethe ansatz to study the Lieb--Liniger model of a one-dimensional gas of bosons on a finite-sized ring interacting via an attractive delta-function potential. We calculate zero-temperature correlation functions for seven particles in the vicinity of the crossover to a localized solitonic state and study the dynamics of a system of four particles quenched to attractive interactions from the ideal-gas ground state. We determine the time evolution of correlation functions, as well as their temporal averages, and discuss the role of bound states in shaping the postquench correlations and relaxation dynamics. Read More


In this paper, we study non-abelian extensions of strict Lie 2-algebras via the cohomology theory. A non-abelian extension of a strict Lie 2-algebra $\g$ by $\frkh$ gives rise to a strict homomorphism from $\g$ to $\SOut(\frkh)$. Conversely, we prove that the obstruction of existence of non-abelian extensions of strict Lie 2-algebras associated to a strict Lie 2-algebra homomorphism from $\g$ to $\SOut(\frkh)$ is given by an element in the third cohomology group. Read More


The renewed Green's function approach to calculating the angular Fock coefficients, $\psi_{k,p}(\alpha,\theta)$ is presented. The final formulas are simplified and specified to be applicable for analytical as well as numerical calculations. The Green's function formulas with the hyperspherical angles $\theta=0,\pi$ (arbitrary $\alpha$) or $\alpha=0,\pi$ (arbitrary $\theta$) are indicated as corresponding to the angular Fock coefficients possessing physical meaning. Read More


An approximate exponential quantum projection filtering scheme is developed for a class of open quantum systems described by Hudson-Parthasarathy quantum stochastic differential equations, aiming to reduce the computational burden associated with online calculation of the quantum filter. By using a differential geometric approach, the quantum trajectory is constrained in a finite-dimensional differentiable manifold consisting of an unnormalized exponential family of quantum density operators, and an exponential quantum projection filter is then formulated as a number of stochastic differential equations satisfied by the finite-dimensional coordinate system of this manifold. A convenient design of the differentiable manifold is also presented through reduction of the local approximation errors, which yields a simplification of the quantum projection filter equations. Read More


In this work we discuss the emergence of approximate causality in a general setup from waveguide QED -i.e. a one-dimensional propagating field interacting with a scatterer. Read More


We first study the problem of the one-loop partition function for a free massive quantum field theory living on a fixed background hyperbolic space on the field of real numbers, $\mathbb{H}^n(\mathbb{R}), \,\, n\geq 2$. Earlier attempts were limited to $n=3$ dimensions due to the computational complexity. We have developed a new method to determine the fundamental solution of the heat equation and techniques to specify its asymptotics in the small time limit. Read More