A UV Complete Compositeness Scenario: LHC Constraints Meet The Lattice

We investigate a recently proposed UV-complete composite Higgs scenario in the light of the first LHC runs. The model is based on a SU(4) gauge group with global flavour symmetry breaking SU(5)$\to$ SO(5), giving rise to pseudo Nambu-Goldstone bosons in addition to the Higgs doublet. This includes a real and a complex electroweak triplet with exotic electric charges. Including these, as well as constraints on other exotic states, we show that LHC measurements are not yet sensitive enough to significantly constrain the model's low energy constants. The Higgs potential is described by two parameters which are on the one hand constrained by the LHC measurement of the Higgs mass and Higgs decay channels and on the other hand can be computed from correlation functions in the UV-complete theory. Hence to exclude the model at least one constant needs to be determined and to validate the Higgs potential both constants need to be reproduced by the UV-theory. Because the model is based on a UV-complete theory, the low energy constants can be computed from first principle numerical simulations of the theory formulated on a lattice, which can help in establishing the validity of this model. We assess the potential impact of lattice calculations for phenomenological studies, as a preliminary step towards Monte Carlo simulations.

Comments: 11 pages, 6 figures

Similar Publications

Recent LHCb results on $R_{K^*}$, the ratio of the branching fractions of $B \to K^* \mu^+ \mu^-$ to that of $B \to K^* e^+ e^-$, for the dilepton invariant mass bins $q^2 \equiv m_{\ell\ell}^2 = [0.045 - 1.1]$ GeV$^2$ and $[1. Read More

We explore the implications of the Borexino experiment's real time measurements of the lowest energy part of the neutrino spectrum from the primary pp fusion process up to 0.420 MeV through the 7^Be decay at 0.862 MeV to the pep reaction at 1. Read More

In the paper we present results for final state emissions of lepton pairs in decays of heavy intermediate states principally of Z boson, but of some importance for the W decays as well. The presented semi-analytical calculation and PHOTOS MC program are in numerical agreement to better than $5\%$ of pair effects. Suggestions for the future works are given. Read More

In 1979 Fradkin and Shenker observed \cite{Frad} that if one considers a Yang-Mills theory fully Higgsed by virtue of scalar fields in the fundamental representation of the ${\rm SU}(N)$ gauge group there is no phase transition in passing from the Higgs regime (weak coupling) to the "QCD confinement" regime at strong coupling. The above two regimes are continuously connected. We combine this observations with lessons from supersymmetric gauge theories which show that the Higgs phase is continuously connected to what is called "instead-of-confinement" phase rather than the phase with quark confinement. Read More

There has been a steady interest in flavor anomalies and their global fits as ideal probes of new physics. If the anomalies are real, one promising explanation is a new $Z'$ gauge boson with flavor-changing coupling to bottom and strange quarks and a flavor-conserving coupling to muons and, possibly, electrons. We point out that direct production of such a $Z'$, emerging from the collision of $b$ and $s$ quarks, may offer a complementary window into these phenomena because collider searches already provide competitive constraints. Read More

We investigate the possibility whether the tensions with SM expectations observed in several b -> sll transitions, including hints for lepton flavour non-universality, could be due to the decay of B into a new light resonance. We find that qualitative agreement with the data can be obtained with a light vector resonance dominantly decaying invisibly. This scenario predicts a shift in the muon anomalous magnetic moment that could explain the long-standing discrepancy. Read More

The semi-inclusive deep inelastic electron scattering off transversely polarized $^3$He, i.e. the process, $e + \vec{^3 {\rm He}} \to e' + h+X$, with $h$ a detected fast hadron, is studied beyond the plane wave impulse approximation. Read More

We investigate the evolution of the flavour composition of the cosmic neutrino background from neutrino decoupling until today. The decoherence of neutrino mass states is described by means of Lindblad operators. Decoherence goes along with the increase of neutrino family entropy, which we obtain as a function of initial spectral distortions, mixing angles and CP-violation phase. Read More

We discuss a scenario in which the $P_c(4450)^{+}$ heavy pentaquark is a $\Sigma_c \bar{D}^*$-$\Lambda_{c}(2595) \bar{D}$ molecule. The $\Lambda_{c1} \bar{D} \to \Sigma_c \bar{D}^*$ transition is mediated by the exchange of a pion almost on the mass shell that generates a long-range $1/r^2$ potential. This is analogous to the effective force that is responsible for the Efimov spectrum in three-boson systems interacting through short-range forces. Read More

We review recent progress in studies of nuclear final-state interactions in deep inelastic scattering (DIS) off the lightest nuclei tagged by a recoil nucleon. These processes hold a lot of potential for resolving the outstanding issues related to the dynamics of hadronization in QCD. Within the minimal Fock component framework, valid at large Bjorken $x$, the main features of the theoretical approach based on the virtual nucleon approximation are elaborated. Read More