Spectral equations for the modular oscillator

Motivated by applications for non-perturbative topological strings in toric Calabi--Yau manifolds, we discuss the spectral problem for a pair of commuting modular conjugate (in the sense of Faddeev) Harper type operators, corresponding to a special case of the quantized mirror curve of local $\mathbb{P}^1\times\mathbb{P}^1$ and complex values of Planck's constant. We illustrate our analytical results by numerical calculations.

Comments: 23 pages, 9 figures

Similar Publications

We provide a self-contained formulation of the BPHZ theorem in the Euclidean context, which yields a systematic procedure to "renormalise" otherwise divergent integrals appearing in generalised convolutions of functions with a singularity of prescribed order at their origin. We hope that the formulation given in this article will appeal to an analytically minded audience and that it will help to clarify to what extent such renormalisations are arbitrary (or not). In particular, we do not assume any background whatsoever in quantum field theory and we stay away from any discussion of the physical context in which such problems typically arise. Read More

We construct a new family of flat connections generalising the KZ connection, the Casimir connection and the dynamical connection. These new connections are attached to simply-laced graphs, and are obtained via quantisation of time-dependent Hamiltonian systems controlling the isomonodromic deformations of meromorphic connections on the sphere. Read More

Traveling periodic waves of the modified Korteweg-de Vries (mKdV) equation are considered in the focusing case. By using one-fold and two-fold Darboux transformations, we construct explicitly the rogue periodic waves of the mKdV equation expressed by the Jacobian elliptic functions dn and cn respectively. The rogue dn-periodic wave describes propagation of an algebraically decaying soliton over the dn-periodic wave, the latter wave is modulationally stable with respect to long-wave perturbations. Read More

Let $V=\bigotimes_{k=1}^{N} V_{k}$ be the $N$ spin-$j$ Hilbert space with $d=2j+1$-dimensional single particle space. We fix an orthonormal basis $\{|m_i\rangle\}$ for each $V_{k}$, with weight $m_i\in \{-j,\ldots j\}$. Let $V_{(w)}$ be the subspace of $V$ with a constant weight $w$, with an orthonormal basis $\{|m_1,\ldots,m_N\rangle\}$ subject to $\sum_k m_k=w$. Read More

We investigate the initial-boundary value problem for the general three-component nonlinear Schrodinger (gtc-NLS) equation with a 4x4 Lax pair on a finite interval by extending the Fokas unified approach. The solutions of the gtc-NLS equation can be expressed in terms of the solutions of a 4x4 matrix Riemann-Hilbert (RH) problem formulated in the complex k-plane. Moreover, the relevant jump matrices of the RH problem can be explicitly found via the three spectral functions arising from the initial data, the Dirichlet-Neumann boundary data. Read More

A nice differential-geometric framework for (non-abelian) higher gauge theory is provided by principal 2-bundles, i.e. categorified principal bundles. Read More

We investigate the initial-boundary value problem for the integrable spin-1 Gross-Pitaevskii (GP) equations with a 4x4 Lax pair on the half-line. The solution of this system can be obtained in terms of the solution of a 4x4 matrix Riemann-Hilbert (RH) problem formulated in the complex k-plane. The relevant jump matrices of the RH problem can be explicitly found using the two spectral functions s(k) and S(k), which can be defined by the initial data, the Dirichlet-Neumann boundary data at x=0. Read More

We present an argument which purports to show that the use of the standard Legendre transform in non-additive Statistical Mechanics is not appropriate. For concreteness, we use as paradigm, the case of systems which are conjecturally described by the (non-additive) Tsallis entropy. We point out the form of the modified Legendre transform that should be used, instead, in the non-additive thermodynamics induced by the Tsallis entropy. Read More

The dynamics along the particle trajectories for the 3D axisymmetric Euler equations are considered. It is shown that if the inflow is rapidly increasing (pushy) in time, the corresponding laminar profile of the incompressible Euler flow is not (in some sense) stable provided that the swirling component is not zero. It is also shown that if the vorticity on the axis is not zero (with some extra assumptions), then there is no steady flow. Read More

We give a survey of elliptic hypergeometric functions associated with root systems, comprised of three main parts. The first two form in essence an annotated table of the main evaluation and transformation formulas for elliptic hypergeometric integeral and series on root systems. The third and final part gives an introduction to Rains' elliptic Macdonald-Koornwinder theory (in part also developed by Coskun and Gustafson). Read More