Causal Inference through the Method of Direct Estimation

The intersection of causal inference and machine learning is a rapidly advancing field. We propose a new approach, the method of direct estimation, that draws on both traditions in order to obtain nonparametric estimates of treatment effects. The approach focuses on estimating the effect of fluctuations in a treatment variable on an outcome. A tensor-spline implementation enables rich interactions between functional bases allowing for the approach to capture treatment/covariate interactions. We show how new innovations in Bayesian sparse modeling readily handle the proposed framework, and then document its performance in simulation and applied examples. Furthermore we show how the method of direct estimation can easily extend to structural estimators commonly used in a variety of disciplines, like instrumental variables, mediation analysis, and sequential g-estimation.

Comments: Unpublished manuscript

Similar Publications

We consider the problem of estimating a consensus community structure by combining information from multiple layers of a multi-layer network or multiple snapshots of a time-varying network. Numerous methods have been proposed in the literature for the more general problem of multi-view clustering in the past decade based on the spectral clustering or a low-rank matrix factorization. As a general theme, these "intermediate fusion" methods involve obtaining a low column rank matrix by optimizing an objective function and then using the columns of the matrix for clustering. Read More


We propose a novel optimization approach for learning a low-rank matrix which is also constrained to be in a given linear subspace. Low-rank constraints are regularly employed in applications such as recommender systems and multi-task learning. In addition, several system identification problems require a learning matrix with both low-rank and linear subspace constraints. Read More


When tracking user-specific online activities, each user's preference is revealed in the form of choices and comparisons. For example, a user's purchase history tracks her choices, i.e. Read More


The scalable calculation of matrix determinants has been a bottleneck to the widespread application of many machine learning methods such as determinantal point processes, Gaussian processes, generalised Markov random fields, graph models and many others. In this work, we estimate log determinants under the framework of maximum entropy, given information in the form of moment constraints from stochastic trace estimation. The estimates demonstrate a significant improvement on state-of-the-art alternative methods, as shown on a wide variety of UFL sparse matrices. Read More


We present here a new model and algorithm which performs an efficient Natural gradient descent for Multilayer Perceptrons. Natural gradient descent was originally proposed from a point of view of information geometry, and it performs the steepest descent updates on manifolds in a Riemannian space. In particular, we extend an approach taken by the "Whitened neural networks" model. Read More


Global constraints and reranking have not been used in cognates detection research to date. We propose methods for using global constraints by performing rescoring of the score matrices produced by state of the art cognates detection systems. Using global constraints to perform rescoring is complementary to state of the art methods for performing cognates detection and results in significant performance improvements beyond current state of the art performance on publicly available datasets with different language pairs and various conditions such as different levels of baseline state of the art performance and different data size conditions, including with more realistic large data size conditions than have been evaluated with in the past. Read More


Current statistical inference problems in areas like astronomy, genomics, and marketing routinely involve the simultaneous testing of thousands -- even millions -- of null hypotheses. For high-dimensional multivariate distributions, these hypotheses may concern a wide range of parameters, with complex and unknown dependence structures among variables. In analyzing such hypothesis testing procedures, gains in efficiency and power can be achieved by performing variable reduction on the set of hypotheses prior to testing. Read More


Variable clustering is one of the most important unsupervised learning methods, ubiquitous in most research areas. In the statistics and computer science literature, most of the clustering methods lead to non-overlapping partitions of the variables. However, in many applications, some variables may belong to multiple groups, yielding clusters with overlap. Read More


Though the deep learning is pushing the machine learning to a new stage, basic theories of machine learning are still limited. The principle of learning, the role of the a prior knowledge, the role of neuron bias, and the basis for choosing neural transfer function and cost function, etc., are still far from clear. Read More


Matrix completion models are among the most common formulations of recommender systems. Recent works have showed a boost of performance of these techniques when introducing the pairwise relationships between users/items in the form of graphs, and imposing smoothness priors on these graphs. However, such techniques do not fully exploit the local stationarity structures of user/item graphs, and the number of parameters to learn is linear w. Read More