Distributed Multi-Speaker Voice Activity Detection for Wireless Acoustic Sensor Networks

A distributed multi-speaker voice activity detection (DM-VAD) method for wireless acoustic sensor networks (WASNs) is proposed. DM-VAD is required in many signal processing applications, e.g. distributed speech enhancement based on multi-channel Wiener filtering, but is non-existent up to date. The proposed method neither requires a fusion center nor prior knowledge about the node positions, microphone array orientations or the number of observed sources. It consists of two steps: (i) distributed source-specific energy signal unmixing (ii) energy signal based voice activity detection. Existing computationally efficient methods to extract source-specific energy signals from the mixed observations, e.g., multiplicative non-negative independent component analysis (MNICA) quickly loose performance with an increasing number of sources, and require a fusion center. To overcome these limitations, we introduce a distributed energy signal unmixing method based on a source-specific node clustering method to locate the nodes around each source. To determine the number of sources that are observed in the WASN, a source enumeration method that uses a Lasso penalized Poisson generalized linear model is developed. Each identified cluster estimates the energy signal of a single (dominant) source by applying a two-component MNICA. The VAD problem is transformed into a clustering task, by extracting features from the energy signals and applying K-means type clustering algorithms. All steps of the proposed method are evaluated using numerical experiments. A VAD accuracy of $> 85 \%$ is achieved for a challenging scenario where 20 nodes observe 7 sources in a simulated reverberant rectangular room.

Similar Publications

Thermodynamic integration (TI) for computing marginal likelihoods is based on an inverse annealing path from the prior to the posterior distribution. In many cases, the resulting estimator suffers from high variability, which particularly stems from the prior regime. When comparing complex models with differences in a comparatively small number of parameters, intrinsic errors from sampling fluctuations may outweigh the differences in the log marginal likelihood estimates. Read More

Sufficient dimension reduction (SDR) is continuing an active research field nowadays for high dimensional data. It aims to estimate the central subspace (CS) without making distributional assumption. To overcome the large-$p$-small-$n$ problem we propose a new approach for SDR. Read More

It is generally accepted that all models are wrong -- the difficulty is determining which are useful. Here, a useful model is considered as one that is capable of combining data and expert knowledge, through an inversion or calibration process, to adequately characterize the uncertainty in predictions of interest. This paper derives conditions that specify which simplified models are useful and how they should be calibrated. Read More

Variational inference methods for latent variable statistical models have gained popularity because they are relatively fast, can handle large data sets, and have deterministic convergence guarantees. However, in practice it is unclear whether the fixed point identified by the variational inference algorithm is a local or a global optimum. Here, we propose a method for constructing iterative optimization algorithms for variational inference problems that are guaranteed to converge to the $\epsilon$-global variational lower bound on the log-likelihood. Read More

The problems of computational data processing involving regression, interpolation, reconstruction and imputation for multidimensional big datasets are becoming more important these days, because of the availability of data and their widely spread usage in business, technological, scientific and other applications. The existing methods often have limitations, which either do not allow, or make it difficult to accomplish many data processing tasks. The problems usually relate to algorithm accuracy, applicability, performance (computational and algorithmic), demands for computational resources, both in terms of power and memory, and difficulty working with high dimensions. Read More

Conditional density estimation (density regression) estimates the distribution of a response variable y conditional on covariates x. Utilizing a partition model framework, a conditional density estimation method is proposed using logistic Gaussian processes. The partition is created using a Voronoi tessellation and is learned from the data using a reversible jump Markov chain Monte Carlo algorithm. Read More

The popularity of online surveys has increased the prominence of sampling weights in claims of representativeness. Yet, much uncertainty remains regarding how these weights should be employed in the analysis of survey experiments: Should they be used or ignored? If they are used, which estimators are preferred? We offer practical advice, rooted in the Neyman-Rubin model, for researchers producing and working with survey experimental data. We examine simple, efficient estimators (Horvitz-Thompson, H\`ajek, "double-H\`ajek", and post-stratification) for analyzing these data, along with formulae for biases and variances. Read More

Many application domains such as ecology or genomics have to deal with multivariate non Gaussian observations. A typical example is the joint observation of the respective abundances of a set of species in a series of sites, aiming to understand the co-variations between these species. The Gaussian setting provides a canonical way to model such dependencies, but does not apply in general. Read More

We describe a way to construct hypothesis tests and confidence intervals after having used the Lasso for feature selection, allowing the regularization parameter to be chosen via an estimate of prediction error. Our estimate of prediction error is a slight variation on cross-validation. Using this variation, we are able to describe an appropriate selection event for choosing a parameter by cross-validation. Read More

The stochastic block model is widely used for detecting community structures in network data. How to test the goodness-of-fit of the model is one of the fundamental problems and has gained growing interests in recent years. In this paper, we propose a new goodness-of-fit test based on the maximum entry of the centered and re-scaled observed adjacency matrix for the stochastic block model in which the number of communities can be allowed to grow linearly with the number of nodes ignoring a logarithm factor. Read More