Multiple User Context Inference by Fusing Data Sources

Inference of user context information, including user's gender, age, marital status, location and so on, has been proven to be valuable for building context aware recommender system. However, prevalent existing studies on user context inference have two shortcommings: 1. focusing on only a single data source (e.g. Internet browsing logs, or mobile call records), and 2. ignoring the interdependence of multiple user contexts (e.g. interdependence between age and marital status), which have led to poor inference performance. To solve this problem, in this paper, we first exploit tensor outer product to fuse multiple data sources in the feature space to obtain an extensional user feature representation. Following this, by taking this extensional user feature representation as input, we propose a multiple attribute probabilistic model called MulAProM to infer user contexts that can take advantage of the interdependence between them. Our study is based on large telecommunication datasets from the local mobile operator of Shanghai, China, and consists of two data sources, 4.6 million call detail records and 7.5 million data traffic records of 8,000 mobile users, collected in the course of six months. The experimental results show that our model can outperform other models in terms of \emph{recall}, \emph{precision}, and the \emph{F1-measure}.

Comments: This paper has been withdrawn by the author due to a crucial sign error in some equations and figures

Similar Publications

The knowledge representation community has built general-purpose ontologies which contain large amounts of commonsense knowledge over relevant aspects of the world, including useful visual information, e.g.: "a ball is used by a football player", "a tennis player is located at a tennis court". Read More


We study fairness in collaborative-filtering recommender systems, which are sensitive to discrimination that exists in historical data. Biased data can lead collaborative-filtering methods to make unfair predictions for users from minority groups. We identify the insufficiency of existing fairness metrics and propose four new metrics that address different forms of unfairness. Read More


We describe the results of a qualitative study on journalists' information seeking behavior on social media. Based on interviews with eleven journalists along with a study of a set of university level journalism modules, we determined the categories of information need types that lead journalists to social media. We also determined the ways that social media is exploited as a tool to satisfy information needs and to define influential factors, which impacted on journalists' information seeking behavior. Read More


Automated music playlist generation is a specific form of music recommendation. Generally stated, the user receives a set of song suggestions defining a coherent listening session. We hypothesize that the best way to convey such playlist coherence to new recommendations is by learning it from actual curated examples, in contrast to imposing ad hoc constraints. Read More


The extraction of individual reference strings from the reference section of scientific publications is an important step in the citation extraction pipeline. Current approaches divide this task into two steps by first detecting the reference section areas and then grouping the text lines in such areas into reference strings. We propose a classification model that considers every line in a publication as a potential part of a reference string. Read More


Social media platforms contain a great wealth of information which provides opportunities for us to explore hidden patterns or unknown correlations, and understand people's satisfaction with what they are discussing. As one showcase, in this paper, we present a system, TwiInsight which explores the insight of Twitter data. Different from other Twitter analysis systems, TwiInsight automatically extracts the popular topics under different categories (e. Read More


Citation texts are sometimes not very informative or in some cases inaccurate by themselves; they need the appropriate context from the referenced paper to reflect its exact contributions. To address this problem, we propose an unsupervised model that uses distributed representation of words as well as domain knowledge to extract the appropriate context from the reference paper. Evaluation results show the effectiveness of our model by significantly outperforming the state-of-the-art. Read More


Many learning-to-rank (LtR) algorithms focus on query-independent model, in which query and document do not lie in the same feature space, and the rankers rely on the feature ensemble about query-document pair instead of the similarity between query instance and documents. However, existing algorithms do not consider local structures in query-document feature space, and are fragile to irrelevant noise features. In this paper, we propose a novel Riemannian metric learning algorithm to capture the local structures and develop a robust LtR algorithm. Read More


Making personalized and context-aware suggestions of venues to the users is very crucial in venue recommendation. These suggestions are often based on matching the venues' features with the users' preferences, which can be collected from previously visited locations. In this paper we present a novel user-modeling approach which relies on a set of scoring functions for making personalized suggestions of venues based on venues content and reviews as well as users context. Read More


The vision of the Semantic Web (SW) is gradually unfolding and taking shape through a web of linked data, a part of which is built by capturing semantics stored in existing knowledge organization systems (KOS), subject metadata and resource metadata. The content of vast bibliographic collections is currently categorized by some widely used bibliographic classification and we may soon see them being mined for information and linked in a meaningful way across the Web. Bibliographic classifications are designed for knowledge mediation which offers both a rich terminology and different ways in which concepts can be categorized and related to each other in the universe of knowledge. Read More