# A Very Large ($θ_{E} \gtrsim40$") Strong Gravitational Lens Selected with the Sunyaev-Zel'dovich Effect: PLCK G287.0+32.9 (z = 0.38)

Since galaxy clusters sit at the high-end of the mass function, the number of galaxy clusters both massive and concentrated enough to yield particularly large Einstein radii poses useful constraints on cosmological and structure formation models. To date, less than a handful of clusters are known to have Einstein radii exceeding $\sim40$" (for a source at $z_{s}\simeq2$, nominally). Here, we report an addition to that list of the Sunyaev-Zel'dovich (SZ) selected cluster, PLCK G287.0+32.9 ($z = 0.38$), the second-highest SZ-mass ($M_{500}$) cluster from the Planck catalog. We present the first strong lensing analysis of the cluster, identifying 20 sets of multiply-imaged galaxies and candidates in new Hubble Space Telescope data, including a long, $l\sim22$" giant arc, as well as a quadruply-imaged, apparently bright (magnified to J$_{F110W}=$25.3 AB), likely high-redshift dropout galaxy at $z_{phot}=6.90$ [6.13--8.43] (95% C.I.). Our analysis reveals a very large critical area (1.55 arcmin$^{2}$, $z_{s}\simeq2$), corresponding to an effective Einstein radius of $\theta_{E}\sim42$". The model suggests the critical area will expand to 2.58 arcmin$^{2}$ (effective $\theta_{E}\sim54$") for sources at $z_{s}\sim10$. Our work adds to recent efforts to model very massive clusters towards the approaching launch of the James Webb Space Telescope, in order to identify the most useful cosmic lenses for studying the early Universe. Spectroscopic redshifts for the multiply-imaged galaxies and additional HST data will be useful for refining the lens model and verifying the nature of the $z\sim7$ dropout.

**Comments:**Submitted; 8 pages, 5 figures, 1 table; comments welcome

## Similar Publications

Gravitational lensing of the CMB is a valuable cosmological signal that correlates to tracers of large-scale structure and acts as a important source of confusion for primordial $B$-mode polarization. State-of-the-art lensing reconstruction analyses use quadratic estimators, which are easily applicable to data. However, these estimators are known to be suboptimal, in particular for polarization, and large improvements are expected to be possible for high signal-to-noise polarization experiments. Read More

The previously introduced class of two-parametric phenomenological inflationary models in General Relativity in which the slow-roll assumption is replaced by the more general, constant-roll condition is generalized to the case of $f(R)$ gravity. The simple constant-roll condition is defined in the original, Jordan frame, and exact expressions for the scalaron potential in the Einstein frame, for the function $f(R)$ (in the parametric form) and for inflationary dynamics are obtained. The region of the model parameters permitted by the latest observational constraints on the scalar spectral index and the tensor-to-scalar ratio of primordial metric perturbations generated during inflation is determined. Read More

**Authors:**Takatoshi Shibuya, Masami Ouch, Akira Konno, Ryo Higuchi, Yuichi Harikane, Yoshiaki Ono, Kazuhiro Shimasaku, Yoshiaki Taniguchi, Masakazu A. R. Kobayashi, Masaru Kajisawa, Tohru Nagao, Hisanori Furusawa, Tomotsugu Goto, Nobunari Kashikawa, Yutaka Komiyama, Haruka Kusakabe, Chien-Hsiu Lee, Rieko Momose, Kimihiko Nakajima, Masayuki Tanaka, Shiang-Yu Wang, Suraphong Yuma

We present an unprecedentedly large catalog consisting of 2,354 >~ L^* Lya emitters (LAEs) at z=5.7 and 6.6 on the 13. Read More

The standard cosmographic approach consists in performing a series expansion of a cosmological observable around $z=0$ and then using the data to constrain the cosmographic (or kinematic) parameters at present time. Such a procedure works well if applied to redshift ranges inside the $z$-series convergence radius ($z<1$), but can be problematic if we want to cover redshift intervals that fall outside the $z-$series convergence radius. This problem can be circumvented if we work with the $y-$redshift, $y=z/(1+z)$, or the scale factor, $a=1/(1+z)=1-y$, for example. Read More

Graviton fluctuations induce strong non-perturbative infrared renormalization effects for the cosmological constant. In flat space the functional renormalization flow drives a positive cosmological constant to zero. We propose a simple computation of the graviton contribution to the flow of the effective potential for scalar fields. Read More

The recent Madala hypothesis, a conjecture that seeks to explain anomalies within Large Hadron Collider (LHC) data (particularly in the transverse momentum of the Higgs boson), is interesting for more than just a statistical hint at unknown and unpredicted physics. This is because the model itself contains additional new particles that may serve as Dark Matter (DM) candidates. These particles interact with the Standard Model via a scalar mediator boson $S$. Read More

Dark Matter (DM) remains a vital, but elusive, component in our current understanding of the universe. Accordingly, many experimental searches are devoted to uncovering its nature. However, both the existing direct detection methods, and the prominent $\gamma$-ray search with the Fermi Large Area Telescope (Fermi-LAT), are most sensitive to DM particles with masses below 1 TeV, and are significantly less sensitive to the hard spectra produced in annihilation via heavy leptons. Read More

In this paper, we investigate the first and second order cosmological perturbations in the light mass Galileon (LMG) scenario. LMG action includes cubic Galileon term along with the standard kinetic term and a potential which is added phenomenologically to achieve late time acceleration. The scalar field is nonminimally coupled to matter in the Einstein frame. Read More

We measure the Planck cluster mass bias using dynamical mass measurements based on velocity dispersions of a subsample of 17 Planck-detected clusters. The velocity dispersions were calculated using redshifts determined from spectra obtained at Gemini observatory with the GMOS multi-object spectrograph. We correct our estimates for effects due to finite aperture, Eddington bias and correlated scatter between velocity dispersion and the Planck mass proxy. Read More

Structure formation at small cosmological scales provides an important frontier for dark matter (DM) research. Scenarios with small DM particle masses, large momenta or hidden interactions tend to suppress the gravitational clustering at small scales. The details of this suppression depend on the DM particle nature, allowing for a direct link between DM models and astrophysical observations. Read More