Improving Text Proposals for Scene Images with Fully Convolutional Networks

Text Proposals have emerged as a class-dependent version of object proposals - efficient approaches to reduce the search space of possible text object locations in an image. Combined with strong word classifiers, text proposals currently yield top state of the art results in end-to-end scene text recognition. In this paper we propose an improvement over the original Text Proposals algorithm of Gomez and Karatzas (2016), combining it with Fully Convolutional Networks to improve the ranking of proposals. Results on the ICDAR RRC and the COCO-text datasets show superior performance over current state-of-the-art.

Comments: 6 pages, 8 figures, International Conference on Pattern Recognition (ICPR) - DLPR (Deep Learning for Pattern Recognition) workshop

Similar Publications

Semantic segmentation has been a long standing challenging task in computer vision. It aims at assigning a label to each image pixel and needs significant number of pixellevel annotated data, which is often unavailable. To address this lack, in this paper, we leverage, on one hand, massive amount of available unlabeled or weakly labeled data, and on the other hand, non-real images created through Generative Adversarial Networks. Read More


Sparse coding (SC) is an automatic feature extraction and selection technique that is widely used in unsupervised learning. However, conventional SC vectorizes the input images, which breaks apart the local proximity of pixels and destructs the elementary object structures of images. In this paper, we propose a novel two-dimensional sparse coding (2DSC) scheme that represents the input images as the tensor-linear combinations under a novel algebraic framework. Read More


In visual question answering (VQA), an algorithm must answer text-based questions about images. While multiple datasets for VQA have been created since late 2014, they all have flaws in both their content and the way algorithms are evaluated on them. As a result, evaluation scores are inflated and predominantly determined by answering easier questions, making it difficult to compare different methods. Read More


Existing RNN-based approaches for action recognition from depth sequences require either skeleton joints or hand-crafted depth features as inputs. An end-to-end manner, mapping from raw depth maps to action classes, is non-trivial to design due to the fact that: 1) single channel map lacks texture thus weakens the discriminative power; 2) relatively small set of depth training data. To address these challenges, we propose to learn an RNN driven by privileged information (PI) in three-steps: An encoder is pre-trained to learn a joint embedding of depth appearance and PI (i. Read More


Convolutional networks reach top quality in pixel-level object tracking but require a large amount of training data (1k ~ 10k) to deliver such results. We propose a new training strategy which achieves state-of-the-art results across three evaluation datasets while using 20x ~ 100x less annotated data than competing methods. Instead of using large training sets hoping to generalize across domains, we generate in-domain training data using the provided annotation on the first frame of each video to synthesize ("lucid dream") plausible future video frames. Read More


The OpenITI team has achieved Optical Character Recognition (OCR) accuracy rates for classical Arabic-script texts in the high nineties. These numbers are based on our tests of seven different Arabic-script texts of varying quality and typefaces, totaling over 7,000 lines. These accuracy rates not only represent a distinct improvement over the actual accuracy rates of the various proprietary OCR options for classical Arabic-script texts, but, equally important, they are produced using an open-source OCR software, thus enabling us to make this Arabic-script OCR technology freely available to the broader Islamic, Persian, and Arabic Studies communities. Read More


We present a semantic part detection approach that effectively leverages object information. We use the object appearance and its class as indicators of what parts to expect. We also model the expected relative location of parts inside the objects based on their appearance. Read More


In recent years, the performance of face verification systems has significantly improved using deep convolutional neural networks (DCNNs). A typical pipeline for face verification includes training a deep network for subject classification with softmax loss, using the penultimate layer output as the feature descriptor, and generating a cosine similarity score given a pair of face images. The softmax loss function does not optimize the features to have higher similarity score for positive pairs and lower similarity score for negative pairs, which leads to a performance gap. Read More


Symmetric Positive Definite (SPD) matrices have been widely used as feature descriptors in image recognition. However, the dimension of an SPD matrix built by image feature descriptors is usually high. So SPD matrices oriented dimensionality reduction techniques are needed. Read More


Person re-identification (re-id) aims to match people across non-overlapping camera views. So far the RGB-based appearance is widely used in most existing works. However, when people appeared in extreme illumination or changed clothes, the RGB appearance-based re-id methods tended to fail. Read More