KEPLER: Keypoint and Pose Estimation of Unconstrained Faces by Learning Efficient H-CNN Regressors

Keypoint detection is one of the most important pre-processing steps in tasks such as face modeling, recognition and verification. In this paper, we present an iterative method for Keypoint Estimation and Pose prediction of unconstrained faces by Learning Efficient H-CNN Regressors (KEPLER) for addressing the face alignment problem. Recent state of the art methods have shown improvements in face keypoint detection by employing Convolution Neural Networks (CNNs). Although a simple feed forward neural network can learn the mapping between input and output spaces, it cannot learn the inherent structural dependencies. We present a novel architecture called H-CNN (Heatmap-CNN) which captures structured global and local features and thus favors accurate keypoint detecion. HCNN is jointly trained on the visibility, fiducials and 3D-pose of the face. As the iterations proceed, the error decreases making the gradients small and thus requiring efficient training of DCNNs to mitigate this. KEPLER performs global corrections in pose and fiducials for the first four iterations followed by local corrections in the subsequent stage. As a by-product, KEPLER also provides 3D pose (pitch, yaw and roll) of the face accurately. In this paper, we show that without using any 3D information, KEPLER outperforms state of the art methods for alignment on challenging datasets such as AFW and AFLW.

Comments: Accept as Oral FG'17

Similar Publications

There is a pressing need to build an architecture that could subsume these networks undera unified framework that achieves both higher performance and less overhead. To this end, two fundamental issues are yet to be addressed. The first one is how to implement the back propagation when neuronal activations are discrete. Read More


Content popularity prediction has been extensively studied due to its importance and interest for both users and hosts of social media sites like Facebook, Instagram, Twitter, and Pinterest. However, existing work mainly focuses on modeling popularity using a single metric such as the total number of likes or shares. In this work, we propose Diffusion-LSTM, a memory-based deep recurrent network that learns to recursively predict the entire diffusion path of an image through a social network. Read More


Images are an important data source for diagnosis and treatment of oral diseases. The manual classification of images may lead to misdiagnosis or mistreatment due to subjective errors. In this paper an image classification model based on Convolutional Neural Network is applied to Quantitative Light-induced Fluorescence images. Read More


Deep learning exploits large volumes of labeled data to learn powerful models. When the target dataset is small, it is a common practice to perform transfer learning using pre-trained models to learn new task specific representations. However, pre-trained CNNs for image recognition are provided with limited information about the image during training, which is label alone. Read More


Reinforcement learning (RL) has recently regained popularity, with major achievements such as beating the European game of Go champion. Here, for the first time, we show that RL can be used efficiently to train a spiking neural network (SNN) to perform object recognition in natural images without using an external classifier. We used a feedforward convolutional SNN and a temporal coding scheme where the most strongly activated neurons fire first, while less activated ones fire later, or not at all. Read More


Recovering surgical scene structure in laparoscope surgery is crucial step for surgical guidance and augmented reality applications. In this paper, a quasi dense reconstruction algorithm of surgical scene is proposed. This is based on a state-of-the-art SLAM system, and is exploiting the initial exploration phase that is typically performed by the surgeon at the beginning of the surgery. Read More


Training a Fully Convolutional Network (FCN) for semantic segmentation requires a large number of pixel-level masks, which involves a large amount of human labour and time for annotation. In contrast, image-level labels are much easier to obtain. In this work, we propose a novel method for weakly supervised semantic segmentation with only image-level labels. Read More


Due to recent advances in technology, the recording and analysis of video data has become an increasingly common component of athlete training programmes. Today it is incredibly easy and affordable to set up a fixed camera and record athletes in a wide range of sports, such as diving, gymnastics, golf, tennis, etc. However, the manual analysis of the obtained footage is a time-consuming task which involves isolating actions of interest and categorizing them using domain-specific knowledge. Read More


Regularized inversion methods for image reconstruction are used widely due to their tractability and their ability to combine complex physical sensor models with useful regularity criteria. Such methods were used in the recently developed Plug-and-Play prior method, which provides a framework to use advanced denoising algorithms as regularizers in inversion. However, the need to formulate regularized inversion as the solution to an optimization problem severely limits both the expressiveness of possible regularity conditions and the variety of provably convergent Plug-and-Play denoising operators. Read More


Online social media is a social vehicle in which people share various moments of their lives with their friends, such as playing sports, cooking dinner or just taking a selfie for fun, via visual means, that is, photographs. Our study takes a closer look at the popular visual concepts illustrating various cultural lifestyles from aggregated, de-identified photographs. We perform analysis both at macroscopic and microscopic levels, to gain novel insights about global and local visual trends as well as the dynamics of interpersonal cultural exchange and diffusion among Facebook friends. Read More