The Mysterious Dimmings of the T Tauri Star V1334 Tau

We present the discovery of two extended ~0.12 mag dimming events of the weak-lined T-Tauri star V1334. The start of the first event was missed but came to an end in late 2003, and the second began in February 2009, and continues as of November 2016. Since the egress of the current event has not yet been observed, if this event is periodic, suggests a period of >13 years. Spectroscopic observations may suggest the presence of a small inner disk, although the spectral energy distribution shows no infrared excess. We explore the possibility that the extending dimming event is caused by an orbiting body (e.g. a disk warp or dust trap), enhanced disk winds, hydrodynamical fluctuations of the inner disk, or a significant increase in the magnetic field flux at the surface of the star. We also find a ~0.32 day periodic photometric signal that persists throughout the 2009 dimming which appears to not be due to ellipsoidal variations from a close stellar binary. High precision photometric observations of V1334 Tau during the K2 campaign 13 combined with simultaneous photometric and spectroscopic observations from the ground will provide crucial information about the photometric variability and its origin.

Comments: 11 pages, 5 Figures, 2 Tables, Submitted to AAS Journals, Minor revision requested by referee (in progress)

Similar Publications

In this paper, we study the 3-body products (two single stars and a binary) of binary-binary (2+2) scattering interactions. This is done using a combination of analytic methods and numerical simulations of 2+2 scattering interactions, both in isolation and in a homogeneous background potential. We derive analytically a simple formula relating the angle between the velocity vectors of the two ejected single stars and the orbital separation of the remaining binary. Read More


With the discovery of the first transiting extrasolar planetary system back to 1999, a great number of projects started to hunt for other similar systems. Because of the incidence rate of such systems was unknown and the length of the shallow transit events is only a few percent of the orbital period, the goal was to monitor continuously as many stars as possible for at least a period of a few months. Small aperture, large field of view automated telescope systems have been installed with a parallel development of new data reduction and analysis methods, leading to better than 1% per data point precision for thousands of stars. Read More


Rotation plays a key role in the star-formation process, from pre-stellar cores to pre-main-sequence (PMS) objects. Understanding the formation of massive stars requires taking into account the accretion of angular momentum during their PMS phase. We study the PMS evolution of objects destined to become massive stars by accretion, focusing on the links between the physical conditions of the environment and the rotational properties of young stars. Read More


We present a hierarchical probabilistic model for improving geometric stellar distance estimates using color--magnitude information. This is achieved with a data driven model of the color--magnitude diagram, not relying on stellar models but instead on the relative abundances of stars in color--magnitude cells, which are inferred from very noisy magnitudes and parallaxes. While the resulting noise-deconvolved color--magnitude diagram can be useful for a range of applications, we focus on deriving improved stellar distance estimates relying on both parallax and photometric information. Read More


We determine instability domains on the Hertzsprung-Russel diagram for rotating main sequence stars with masses 2-20 $\mathrm M_\odot$. The effects of the Coriolis force are treated in the framework of the traditional approximation. High-order g-modes with the harmonic degrees, $\ell$, up to 4 and mixed gravity-Rossby modes with $|m|$ up to 4 are considered. Read More


I discuss two related nonlinear mechanisms of tidal dissipation that require finite tidal deformations for their operation: the elliptical instability and the precessional instability. Both are likely to be important for the tidal evolution of short-period extrasolar planets. The elliptical instability is a fluid instability of elliptical streamlines, such as in tidally deformed non-synchronously rotating or non-circularly orbiting planets. Read More


We carried out multiwavelength (0.7-5 cm), multiepoch (1994-2015) Very Large Array (VLA) observations toward the region enclosing the bright far-IR sources FIR 3 (HOPS 370) and FIR 4 (HOPS 108) in OMC-2. We report the detection of 10 radio sources, seven of them identified as young stellar objects. Read More


We investigate the change in the orbital period of a binary system due to dynamical tides by taking into account the evolution of a main-sequence star. Three stars with masses of one, one and a half, and two solar masses are considered. A star of one solar mass at lifetimes $t=4. Read More


We address the physical nature of subdwarf A-type (sdA) stars and their possible link to extremely low mass (ELM) white dwarfs (WDs). The two classes of objects are confused in low-resolution spectroscopy. However, colors and proper motions indicate that sdA stars are cooler and more luminous, and thus larger in radius, than published ELM WDs. Read More