Nonclassical Light Generation from III-V and Group-IV Solid-State Cavity Quantum Systems

In this chapter, we present the state-of-the-art in the generation of nonclassical states of light using semiconductor cavity quantum electrodynamics (QED) platforms. Our focus is on the photon blockade effects that enable the generation of indistinguishable photon streams with high purity and efficiency. Starting with the leading platform of InGaAs quantum dots in optical nanocavities, we review the physics of a single quantum emitter strongly coupled to a cavity. Furthermore, we propose a complete model for photon blockade and tunneling in III-V quantum dot cavity QED systems. Turning toward quantum emitters with small inhomogeneous broadening, we propose novel experiments for nonclassical light generation using group-IV color-center systems. We present multi-emitter cavity QED platforms, which feature richer dressed-states ladder structures, and show how they offer opportunities for studying new regimes of high-quality photon blockade.

Comments: 64 pages, 32 figures, to appear as Chapter 11 in Advances in Atomic Molecular and Optical Physics, Vol. 66

Similar Publications

We demonstrate integrating a high quality factor lithium niobate microdisk resonator with a free-standing membrane waveguide. Our technique is based on femtosecond laser direct writing which produces the pre-structure, followed by focused ion beam milling which reduces the surface roughness of sidewall of the fabricated structure to nanometer scale. Efficient light coupling between the integrated waveguide and microdisk was achieved, and the quality factor of the microresonator was measured as high as 1. Read More


Quantum nonlocality, i.e. the presence of strong correlations in spatially seperated systems which are forbidden by local realism, lies at the heart of quantum communications and quantum computing. Read More


Ultrastable high-spectral-purity lasers have served as the cornerstone behind optical atomic clocks, quantum measurements, precision optical-microwave generation, high resolution optical spectroscopy and sensing. Hertz-level lasers stabilized to high finesse Fabry-P\'erot mirror cavities are typically used for these studies but are large and fragile such that they have remained laboratory instruments. There is a clear demand in rugged miniaturized lasers operating potentially at comparable stabilities to those bulk lasers. Read More


A rigorous Floquet mode analysis is proposed for a zero thickness space-time modulated Huygens' metasurface to model and determine the strengths of the new harmonic components of the scattered fields. The proposed method is based on Generalized Sheet Transition Conditions (GSTCs) treating a metasurface as a spatial discontinuity. The metasurface is described in terms of Lorentzian electric and magnetic surface susceptibilities, $\chi_\text{ee}$ and $\chi_\text{mm}$, respectively, and its resonant frequencies are periodically modulated in both space and time. Read More


Recent remarkable progress in wave-front shaping has enabled control of light propagation inside linear media to focus and image through scattering objects. In particular, light propagation in multimode fibers comprises complex intermodal interactions and rich spatiotemporal dynamics. Control of physical phenomena in multimode fibers and their application are in its infancy, opening opportunities to take advantage of the complex mode interactions. Read More


Quantum-enhanced measurements exploit quantum mechanical effects for increasing the sensitivity of measurements of certain physical parameters and have great potential for both fundamental science and concrete applications. Most of the research has so far focused on using highly entangled states, which are, however, difficult to produce and to stabilize for a large number of constituents. In the following we review alternative mechanisms, notably the use of more general quantum correlations such as quantum discord, identical particles, or non-trivial hamiltonians; the estimation of thermodynamical parameters or parameters characterizing non-equilibrium states; and the use of quantum phase transitions. Read More


Magnetic dipolar modes (MDMs) in a quasi 2D ferrite disk are microwave energy eigenstate oscillations with topologically distinct structures of rotating fields and unidirectional power flow circulations. At the first glance, this might seem to violate the law of conservation of an angular momentum, since the microwave structure with an embedded ferrite sample is mechanically fixed. However, an angular momentum is seen to be conserved if topological properties of electromagnetic fields in the entire microwave structure are taken into account. Read More


We show how analogues of a large number of well-known nonlinear-optics phenomena can be realized with one or more two-level atoms coupled to one or more resonator modes. Through higher-order processes, where virtual photons are created and annihilated, an effective deterministic coupling between two states of such a system can be created. In this way, analogues of three-wave mixing, four-wave mixing, higher-harmonic and -subharmonic generation (i. Read More


We introduce the concept of tunable ideal magnetic dipole scattering, where a nonmagnetic nanoparticle scatters lights as a pure magnetic dipole. High refractive index subwavelength nanoparticles usually support both electric and magnetic dipole responses. Thus, to achieve ideal magnetic dipole scattering one has to suppress the electric dipole response. Read More


Estimating the angular separation between two incoherently radiating monochromatic point sources is a canonical toy problem to quantify spatial resolution in imaging. In recent work, Tsang {\em et al.} showed, using a Fisher Information analysis, that Rayleigh's resolution limit is just an artifact of the conventional wisdom of intensity measurement in the image plane. Read More