Nonclassical Light Generation from III-V and Group-IV Solid-State Cavity Quantum Systems

In this chapter, we present the state-of-the-art in the generation of nonclassical states of light using semiconductor cavity quantum electrodynamics (QED) platforms. Our focus is on the photon blockade effects that enable the generation of indistinguishable photon streams with high purity and efficiency. Starting with the leading platform of InGaAs quantum dots in optical nanocavities, we review the physics of a single quantum emitter strongly coupled to a cavity. Furthermore, we propose a complete model for photon blockade and tunneling in III-V quantum dot cavity QED systems. Turning toward quantum emitters with small inhomogeneous broadening, we propose novel experiments for nonclassical light generation using group-IV color-center systems. We present multi-emitter cavity QED platforms, which feature richer dressed-states ladder structures, and show how they offer opportunities for studying new regimes of high-quality photon blockade.

Comments: 64 pages, 32 figures, to appear as Chapter 11 in Advances in Atomic Molecular and Optical Physics, Vol. 66

Similar Publications

Laser interferometers with high circulating power and suspended optics, such as the LIGO gravitational wave detectors, experience an optomechanical coupling effect known as a parametric instability: the runaway excitation of a mechanical resonance in a mirror driven by the optical field. This can saturate the interferometer sensing and control systems and limit the observation time of the detector. Current mitigation techniques at the LIGO sites are successfully suppressing all observed parametric instabilities, and focus on the behaviour of the instabilities in the Fabry-Perot arm cavities of the interferometer, where the instabilities are first generated. Read More


Planar photonic nanostructures have recently attracted a great deal of attention for quantum optics applications. In this article, we carry out full 3D numerical simulations to fully account for all radiation channels and thereby quantify the coupling efficiency of a quantum emitter embedded in a photonic-crystal waveguide. We utilize mixed boundary conditions by combining active Dirichlet boundary conditions for the guided mode and perfectly-matched layers for the radiation modes. Read More


We present a degenerate four-wave mixing experiment on a silicon nitride (SiN) waveguide covered with gated graphene. We observe strong dependencies on signal-pump detuning and Fermi energy, i.e. Read More


Controlling and confining light by exciting plasmons in resonant metallic nanostructures is an essential aspect of many new emerging optical technologies. Here we explore the possibility of controllably reconfiguring the intrinsic optical properties of semi-continuous gold films, by inducing permanent morphological changes with a femtosecond (fs)-pulsed laser above a critical power. Optical transmission spectroscopy measurements show a correlation between the spectra of the morphologically modified films and the wavelength, polarization, and the intensity of the laser used for alteration. Read More


Non-reciprocity in optical and plasmonic systems is a key element for engineering the one-way propagation structures for light manipulation. Here we investigate topological nanostructures covered with graphene-based meta-surfaces, which consist of a periodic pattern of sub-wavelength stripes of graphene winding around the (meta-)tube or (meta-)torus. We establish the relation between the topological and plasmonic properties in these structures, as justified by simple theoretical expressions. Read More


Solitons occur in many physical systems when a nonlinearity compensates wave dispersion. Their recent formation in microresonators opens a new research direction for nonlinear optical physics and provides a platform for miniaturization of spectroscopy and frequency metrology systems. These microresonator solitons orbit around a closed waveguide path and produce a repetitive output pulse stream at a rate set by the round-trip time. Read More


We develop a class of supercell photonic crystals supporting complete photonic bandgaps based on breaking spatial symmetries of the underlying primitive photonic crystal. One member of this class based on a two-dimensional honeycomb structure supports a complete bandgap for an index-contrast ratio as low as $n_{high}/n_{low} = 2.1$, making this the first such 2D photonic crystal to support a complete bandgap in lossless materials at visible frequencies. Read More


Hybrid systems of cold atoms and optical cavities are promising systems for increasing the stability of laser oscillators used in quantum metrology and atomic clocks. In this paper we map out the atom-cavity dynamics in such a system and demonstrate limitations as well as robustness of the approach. We investigate the phase response of an ensemble of cold strontium-88 atoms inside an optical cavity for use as an error signal in laser frequency stabilization. Read More


Proposed near-future upgrades of the current advanced interferometric gravitational wave detectors include the usage of frequency dependent squeezed light to reduce the current sensitivity-limiting quantum noise. We quantify and describe the downgrading effects that spatial mode mismatches have on the squeezed field. We also show that squeezing the second-order Hermite-Gaussian modes $\mathrm{HG}_{02}$ and $\mathrm{HG}_{20}$, in addition to the fundamental mode, has the potential to increase the robustness to spatial mode mismatches. Read More


Phase retrieval is one of the most challenging processes in many interferometry techniques. To promote the phase retrieval, Xu et. al [X. Read More