Nonclassical Light Generation from III-V and Group-IV Solid-State Cavity Quantum Systems

In this chapter, we present the state-of-the-art in the generation of nonclassical states of light using semiconductor cavity quantum electrodynamics (QED) platforms. Our focus is on the photon blockade effects that enable the generation of indistinguishable photon streams with high purity and efficiency. Starting with the leading platform of InGaAs quantum dots in optical nanocavities, we review the physics of a single quantum emitter strongly coupled to a cavity. Furthermore, we propose a complete model for photon blockade and tunneling in III-V quantum dot cavity QED systems. Turning toward quantum emitters with small inhomogeneous broadening, we propose novel experiments for nonclassical light generation using group-IV color-center systems. We present multi-emitter cavity QED platforms, which feature richer dressed-states ladder structures, and show how they offer opportunities for studying new regimes of high-quality photon blockade.

Comments: 64 pages, 32 figures, to appear as Chapter 11 in Advances in Atomic Molecular and Optical Physics, Vol. 66

Similar Publications

Strong inter-particle interactions between polaritons have traditionally stemmed from their exciton component. In this work, we impart a strong photonic nonlinearity to a polaritonic mode by embedding a nonlinear polymethine dye within a high-Q all-metal microcavity. We demonstrate nonlinear microcavities operating in the ultrastrong coupling regime with a normalized coupling ratio of 62\%, the highest reported to date. Read More

In both light optics and electron optics, the amplitude of a wave scattered by an object is an observable that is usually recorded in the form of an intensity distribution in a real space image or a diffraction image. In contrast, retrieval of the phase of a scattered wave is a well-known challenge, which is usually approached by interferometric or numerical methods. In electron microscopy, as a result of constraints in the lens setup, it is particularly difficult to retrieve the phase of a diffraction image. Read More

Optical technologies call for waveguide networks featuring high integration densities, low losses, and simple operation. Here, we present polymer waveguides fabricated from a negative tone photoresist via two-photon-lithography in direct laser writing, and show a detailed parameter study of their performance. Specifically, we produce waveguides featuring bend radii down to 40 {\mu}m, insertion losses of the order of 10 dB, and loss coefficients smaller than 0. Read More

An experimental scheme is introduced to measure multiple parameters that are encoded in the phase quadrature of a light beam. Using a modal description and a spectrally-resolved homodyne detection, it is shown that all of the information is collected simultaneously, such that a single measurement allows extracting the value of multiple parameters \emph{post-facto}. With a femtosecond laser source, we apply this scheme to a measurement of the delay between two pulses with a shot-noise limited sensitivity as well as extracting the dispersion value of a dispersive medium. Read More

Today's standard fabrication processes are just capable of manufacturing slab of photonic and phononic crystals, so an efficient method for analysis of these crystals is indispensable. Plane wave expansion (PWE) as a widely used method in studying photonic and phononic (phoxonic) crystals in full three dimensions is not suitable for slab analysis in its standard form, because of convergence and stability issues. Here, we propose a modification to this method which overcomes these limitations. Read More

We study exciton-polariton nonlinear optical fluids in a high momentum regime for the first time. Defects in the fluid develop into dark solitons whose healing length decreases with increasing density. We deduce interaction constants for continuous wave polaritons an order of magnitude larger than with picosecond pulses. Read More

The band structure of a Si inverse diamond structure whose lattice point shape was vacant regular octahedrons was calculated using plane wave expansion method and a complete photonic band gap was theoretically confirmed at around 0.4 THz. It is said that three-dimensional photonic crystals have no polarization anisotropy in photonic band gap (stop gap, stop band) of high symmetry points in normal incidence. Read More

Here we demonstrate the gas sensing ability of cavity-coupled metallic nanoparticle systems, comprising gold nanoparticles separated from a gold mirror with a polymer spacer. An increase in relative humidity (RH) causes the spacer to expand, which induces a significant reduction of nanoparticle scattering intensity, as the scattering is highly dependent on the cavity-nanoparticle coupling that closely relates to the nanoparticle-mirror distance. This lithography-free structure enables a remarkable averaging sensitivity at 0. Read More

Brillouin processes couple light and sound through optomechanical three-wave interactions. Within bulk solids, this coupling is mediated by the intrinsic photo-elastic material response yielding coherent emission of high frequency (GHz) acoustic phonons. This same interaction produces strong optical nonlinearities that overtake both Raman or Kerr nonlinearities in practically all solids. Read More

We study the three-dimensional (3D) spatially-resolved distribution of the energy density of light in a 3D scattering medium upon the excitation of open transmission channels. The open transmission channels are excited by spatially shaping the incident optical wavefronts. To probe the local energy density, we excite isolated fluorescent nanospheres distributed inside the medium. Read More