Thermal quantum time-correlation functions from classical-like dynamics

Thermal quantum time-correlation functions are of fundamental importance in quantum dynamics, allowing experimentally-measurable properties such as reaction rates, diffusion constants and vibrational spectra to be computed from first principles. Since the exact quantum solution scales exponentially with system size, there has been considerable effort in formulating reliable linear-scaling methods involving exact quantum statistics and approximate quantum dynamics modelled with classical-like trajectories. Here we review recent progress in the field with the development of methods including Centroid Molecular Dynamics (CMD), Ring Polymer Molecular Dynamics (RPMD) and Thermostatted RPMD (TRPMD). We show how these methods have recently been obtained from `Matsubara dynamics', a form of semiclassical dynamics which conserves the quantum Boltzmann distribution. We also rederive t->0+ quantum transition-state theory (QTST) in the Matsubara dynamics formalism showing that Matsubara-TST, like RPMD-TST, is equivalent to QTST. We end by surveying areas for future progress.

Comments: 25 pages, 8 figures. Submitted as a New View article to Molecular Physics on 11th January 2017

Similar Publications

Oxygen functional groups are one of the most important subjects in the study of electrochemical properties of carbon materials which can change the wettability, conductivity and pore size distributions of carbon materials, and can occur redox reactions. In the electrode materials of carbon-based supercapacitors, the oxygen functional groups have widely been used to improve the capacitive performance. In this paper, we not only analyzed the reasons for the increase of the capacity that promoted by oxygen functional groups in the charge-discharge cycling tests, but also analyzed the mechanism how the pseudocapacitance was provided by the oxygen functional groups in the acid/alkaline aqueous electrolyte. Read More


In the standard DNA brick set-up, distinct 32-nucleotide strands of single-stranded DNA are each designed to bind specifically to four other such molecules. Experimentally, it has been demonstrated that the overall yield is increased if certain bricks which occur on the outer faces of target structures are merged with adjacent bricks. However, it is not well understood by what mechanism such `boundary bricks' increase the yield, as they likely influence both the nucleation process and the final stability of the target structure. Read More


In this contribution, we extend our framework for analyzing and visualizing correlated many-electron dynamics to non-variational, highly scalable electronic structure method. Specifically, an explicitly time-dependent electronic wave packet is written as a linear combination of $N$-electron wave functions at the configuration interaction singles (CIS) level, which are obtained from a reference time-dependent density functional theory (TDDFT) calculation. The procedure is implemented in the open-source Python program detCI@ORBKIT, which extends the capabilities of our recently published post-processing toolbox [J. Read More


We report the three main ingredients to calculate three- and four-electron integrals over Gaussian basis functions involving Gaussian geminal operators: fundamental integrals, upper bounds, and recurrence relations. In particular, we consider the three- and four-electron integrals that may arise in explicitly-correlated F12 methods. A straightforward method to obtain the fundamental integrals is given. Read More


Methyl thionitrite CH3SNO is an important model of S-nitrosated cysteine aminoacid residue (CysNO), a ubiquitous biological S-nitrosothiol (RSNO) involved in numerous physiological processes. Here, we report accurate structure and properties of CH3SNO using accurate ab initio Feller-Peterson-Dixon (FPD) approach. The FPD scheme included CCSD(T)-F12/CBS extrapolated values, as well as corrections for the quadruple coupled cluster excitations, core-valence and scalar-relativistic effects. Read More


The calculation of caloric properties such as heat capacity, Joule-Thomson coefficients and the speed of sound by classical force-field-based molecular simulation methodology has received scant attention in the literature, particularly for systems composed of complex molecules whose force fields (FFs) are characterized by a combination of intramolecular and intermolecular terms (referred to herein as "flexible FFs"). The calculation of a thermodynamic property for a system whose molecules are described by such a FF involves the calculation of the residual property prior to its addition to the corresponding ideal-gas (IG) property, the latter of which is separately calculated, either using thermochemical compilations or nowadays accurate quantum mechanical calculations. Although the simulation of a volumetric residual property proceeds by simply replacing the intermolecular FF in the rigid molecule case by the total (intramolecular plus intermolecular) FF, this is not the case for a caloric property. Read More


We examine the olfactory discrimination of left- and right-handed enantiomers of chiral odorants based on the odorant-mediated electron transport from a donor to an acceptor of the olfactory receptors embodied in a biological environment. The chiral odorant is effectively described by an asymmetric double-well potential whose minima are associated to the left- and right-handed enantiomers. The introduced asymmetry is considered as an overall measure of chiral interactions. Read More


We have theoretically studied the uptake of a non-uniformly charged biomolecule, suitable to represent a globular protein or a drug, by a charged hydrogel carrier in the presence of a 1:1 electrolyte. Based on the analysis of a physical interaction Hamiltonian including monopolar, dipolar and Born (self-energy) contributions derived from linear electrostatic theory of the unperturbed homogeneous hydrogel, we have identified five different sorption states of the system, from complete repulsion of the molecule to its full sorption deep inside the hydrogel, passing through meta- and stable surface adsorption states. The results are summarized in state diagrams that also explore the effects of varying the electrolyte concentration, the sign of the net electric charge of the biomolecule, and the role of including excluded-volume (steric) or hydrophobic biomolecule-hydrogel interactions. Read More


We use an optical centrifuge to excite coherent rotational wave packets in N$_2$O, CS$_2$ and OCS molecules with rotational quantum numbers reaching up to J=465, 690 and 1186, respectively. Time-resolved rotational spectroscopy at such ultra-high levels of rotational excitation can be used as a sensitive tool to probe the molecular potential energy surface at inter-nuclear distances far from their equilibrium values. Significant bond stretching in the centrifuged molecules results in the growing period of the rotational revivals, which are experimentally detected using coherent Raman scattering. Read More


The spin-boson model is a simplified Hamiltonian often used to study non-adiabatic dynamics in large condensed phase systems, even though it has not been solved in a fully analytic fashion. Herein, we present an exact analytic expression for the dynamics of the spin-boson model in the infinitely slow bath limit and generalize it to approximate dynamics for faster baths. We achieve the latter by developing a hybrid approach that combines the exact slow-bath result with the popular NIBA method to generate a memory kernel that is formally exact to second order in the diabatic coupling but also contains higher-order contributions approximated from the second order term alone. Read More