Structure formulas for wave operators under a small scaling invariant condition

We obtain structure formulas for the intertwining wave operators of a Schroedinger operator with potential V in R^3. The difference from our previous submission arXiv:1612.07304 lies with the fact that here we impose a scaling invariant condition on the potential, albeit with a smallness requirement.

Comments: 16 pages. arXiv admin note: text overlap with arXiv:1612.07304

Similar Publications

In this short note we consider an unconventional overdetermined problem for the torsion function: let $n\geq 2$ and $\Omega$ be a bounded open set in $\mathbb{R}^n$ whose torsion function $u$ (i.e. the solution to $\Delta u=-1$ in $\Omega$, vanishing on $\partial\Omega$) satisfies the following property: $\sqrt{M-u(x)}$ is convex, where $M=\max\{u(x)\,:\,x\in\overline\Omega\}$. Read More