The weight of collapse: dynamical reduction models in general relativistic contexts

Inspired by possible connections between gravity and foundational question in quantum theory, we consider an approach for the adaptation of objective collapse models to a general relativistic context. We apply these ideas to a list of open problems in cosmology and quantum gravity, such as the emergence of seeds of cosmic structure, the black hole information issue, the problem of time in quantum gravity and, in a more speculative manner, to the nature of dark energy and the origin of the very special initial state of the universe. We conclude that objective collapse models offer a rather promising path to deal with all of these issues.

Comments: 25 pages, 1 figure

Similar Publications

Determining cosmological field equations represents a still very debated matter and implies a wide discussion around different theoretical proposals. A suitable conceptual scheme could be represented by gravity models that naturally generalize Einstein Theory like higher order gravity theories and higher dimensional ones. Both of these two different approaches allow to define, at the effective level, Einstein field equations equipped with source-like energy momentum tensors of geometrical origin. Read More

Anisotropic exponential cosmological solutions for a space of arbitrary dimension filled with ordinary matter in the 4th and 5th orders of Lovelock gravity are obtained. Also we have supposed a generalization of such solutions on an arbitrary order. All the solutions are represented as a set of conditions on Hubble parameters. Read More

It is well known that interpreting the cosmological constant as the pressure, the AdS black holes behave as van der Waals thermodynamic system. In this case, like a phase transition from vapor to liquid in a usual van der Waals system, black holes also changes phases about a critical point in $P$-$V$ picture, where $P$ is the pressure and $V$ is the thermodynamic volume. Here we give a geometrical description of this phase transition. Read More

We study the scalar-tensor theory of gravity profoundly in the action level as well as in the thermodynamic level. Contrary to the usual description of the literature about the equivalence in the two conformally connected frames, this paper addresses several incomplete inferences regarding it as well as it mentions some in-equivalences which were not pointed out earlier. In the thermodynamic level, our analysis shows the two frames are equivalent. Read More

In the early sixties Leonard Parker discovered that the expansion of the universe can create particles out of the vacuum, opening a new and fruitfull field in physics. We give a historical review in the form of an interview that took place during the Conference ERE2014 (Valencia 1-5, September, 2014). Read More

We have analytically investigated the effects of non-linearity on the free energy and thermodynamic geometry of holographic superconductors in $2+1 -$dimensions. The non-linear effect is introduced by considering the coupling of the massive charged scalar field with Born-Infeld electrodynamics. We then calculate the relation between critical temperature and charge density from two different methods, namely, the matching method and the divergence of the scalar curvature which is obtained by investigating the thermodynamic geometry of the model. Read More

In arXiv:1601.02203, a simple model has been proposed in order to solve one of the problems related with the cosmological constant. The model is given by a topological field theory and the model has an infinite numbers of the BRS symmetries. Read More

It is analyzed the effects of both bulk and shear viscosities on the perturbations, relevant for structure formation in late time cosmology. It is shown that shear viscosity can be as effective as the bulk viscosity on suppressing the growth of perturbations and delaying the nonlinear regime. A statistical analysis of the shear and bulk viscous effects is performed and some constraints on these viscous effects are given. Read More

Massive black-hole binaries, formed when galaxies merge, are among the primary sources of gravitational waves targeted by ongoing Pulsar Timing Array (PTA) experiments and the upcoming space-based LISA interferometer. However, their formation and merger rates are still highly uncertain. Recent upper limits on the stochastic gravitational-wave background obtained by PTAs are starting being in marginal tension with theoretical models for the pairing and orbital evolution of these systems. Read More

We propose that the intrinsic geometry of holographic screens should be described by the Newton-Cartan geometry. As a test of this proposal, we show that the evolution equations of the screen can be written in a covariant form in terms of a stress tensor, an energy current, and a momentum one-form. We derive the expressions for the stress tensor, energy density, and momentum one-form using Brown-York action formalism. Read More