# Exponent for classical-quantum multiple access channel

In this paper we obtain a lower bound of exponent of average probability of error for classical quantum multiple access channel, which implies that for all rate pairs in the capacity region is achievable by a code with exponential probability of error. Thus we re-obtain the direct coding theorem.

## Similar Publications

The divacancies in SiC are a family of paramagnetic defects that show promise for quantum communication technologies due to their long-lived electron spin coherence and their optical addressability at near-telecom wavelengths. Nonetheless, a mechanism for high-fidelity spin-to-photon conversation, which is a crucial prerequisite for such technologies, has not yet been demonstrated. Here we demonstrate a high-fidelity spin-to-photon interface in isolated divacancies in epitaxial films of 3C-SiC and 4H-SiC. Read More

We study the influence of atomic interactions on quantum simulations in momentum-space lattices (MSLs), where driven atomic transitions between discrete momentum states mimic transport between sites of a synthetic lattice. Low energy atomic collisions, which are short ranged in real space, relate to nearly infinite-ranged interactions in momentum space. However, the distinguishability of the discrete momentum states coupled in MSLs gives rise to an added exchange energy between condensate atoms in different momentum orders, relating to an effectively attractive, finite-ranged interaction in momentum space. Read More

Transformations on quantum states form a basic building block of every quantum information system. From photonic polarization to two-level atoms, complete sets of quantum gates for a variety of qubit systems are well known. For multi-level quantum systems beyond qubits, the situation is more challenging. Read More

For pure symmetric 3-qubit states there are only three algebraically independent entanglement measures; one choice is the pairwise concurrence $\mathcal C$, the 3-tangle $\tau$, and the Kempe invariant $\kappa$. Using a canonical form for symmetric $N$-qubit states derived from their Majorana representation, we derive the explicit achievable region of triples $(\mathcal C,\tau,\kappa)$. Read More

We study the behaviour of the Uhlmann connection in systems of fermions undergoing phase transitions. In particular, we analyse some of the paradigmatic cases of topological insulators and superconductors in dimension one, as well as the BCS theory of superconductivity in three dimensions. We show that the Uhlmann connection signals phase transitions in which the eigenbasis of the state of the system changes. Read More

We show that a proper expression of the uncertainty relations for a pair of canonically-conjugate continuous variables relies on entropy power, a standard notion in Shannon information theory for real-valued signals. The resulting entropy-power uncertainty relation is equivalent to the en- tropic formulation of the uncertainty relation due to Bialynicki-Birula and Mycielski, but can be further extended to rotated variables. Hence, based on a reasonable assumption, we prove a tighter form of the entropy-power uncertainty relation taking correlations into account, and provide extensive numerical evidence of its validity. Read More

For a bipartite quantum system consisting of subsystems A and B it was shown in J. Phys. A: Math. Read More

In this present work, the scattering state solutions of the Spinless Salpeter equation with the Varshni potential model were investigated. The approximate scattering phase shift, normalization constant, bound state energy, wave number and wave function in the asymptotic region were obtained. The behaviour of the phase shift with the two-body mass index {\eta} were discussed and presented. Read More

We report on the occurrence of the focus-focus type of monodromy in an integrable version of the Dicke model. Classical orbits forming a pinched torus represent extreme realizations of the dynamical superradiance phenomenon. Quantum signatures of monodromy appear in lattices of expectation values of various quantities in the Hamiltonian eigenstates and are related to an excited-state quantum phase transition. Read More

The mathematical notion of spectral singularity admits a description in terms of purely outgoing solutions of a corresponding linear wave equation. This leads to a nonlinear generalization of this notion for nonlinearities that are confined in space. We examine the nonlinear spectral singularities in arbitrary TE and TM modes of a mirrorless slab laser that involves a weak Kerr nonlinearity. Read More