Spatial proximity effects on the excitation of Sheath RF Voltages by evanescent Slow Waves in the Ion Cyclotron Range of Frequencies

We investigate theoretically how sheath radio-frequency (RF) oscillations relate to the spatial structure of the near RF parallel electric field E// emitted by Ion Cyclotron (IC) wave launchers. We use a simple model of Slow Wave (SW) evanescence coupled with Direct Current (DC) plasma biasing via sheath boundary conditions in a 3D parallelepiped filled with homogeneous cold magnetized plasma. Within a "wide sheaths" asymptotic regime, valid for large-amplitude near RF fields, the RF part of this simple RF+DC model becomes linear: the sheath oscillating voltage VRF at open field line boundaries can be re-expressed as a linear combination of individual contributions by every emitting point in the input field map. SW evanescence makes individual contributions all the larger as the wave emission point is located closer to the sheath walls. The decay of |VRF| with the emission point/sheath poloidal distance involves the transverse SW evanescence length and the radial protrusion depth of lateral boundaries. The decay of |VRF| with the emitter/sheath parallel distance is quantified as a function of the parallel SW evanescence length and the parallel connection length of open magnetic field lines. For realistic geometries and target SOL plasmas, poloidal decay occurs over a few centimeters. Typical parallel decay lengths for |VRF| are found smaller than IC antenna parallel extension. Oscillating sheath voltages at IC antenna side limiters are therefore mainly sensitive to E// emission by active or passive conducting elements near these limiters, as suggested by recent experimental observations. Parallel proximity effects could also explain why sheath oscillations persist with antisymmetric strap toroidal phasing, despite the parallel anti-symmetry of the radiated field map. They could finally justify current attempts at reducing the RF fields induced near antenna boxes to attenuate sheath oscillations in their vicinity.


Similar Publications

Magnetic dynamo action caused by the magnetorotational instability is studied in the shearing-box approximation with no imposed net magnetic flux. Consistent with recent studies, the dynamo action is found to be sensitive to the aspect ratio of the box: it is much easier to obtain in tall boxes (stretched in the direction normal to the disk plane) than in long boxes (stretched in the radial direction). Our direct numerical simulations indicate that the dynamo is possible in both cases, given a large enough magnetic Reynolds number. Read More


The Gr\"uneisen parameter is evaluated for three-dimensional Yukawa systems in the strongly coupled regime. Simple analytical expression is derived from the thermodynamic consideration and its structure is analysed in detail. Possible applications are briefly discussed. Read More


We report on laser-based ion acceleration using freely suspended liquid crystal film targets, formed with thicknesses varying from 100 $nm$ to 2 $\mu m$ for this experiment. Optimization of Target Normal Sheath Acceleration (TNSA) of protons is shown using a 1 $\times$ $10^{20}$ $W/cm^2$, 30 fs laser with intensity contrast better than $10^{-7}:1$. The optimum thickness was near 700 $nm$, resulting in a proton energy maximum of 24 $MeV$. Read More


We study the thermalization, injection, and acceleration of ions with different mass/charge ratios, $A/Z$, in non-relativistic collisionless shocks via hybrid (kinetic ions-fluid electrons) simulations. In general, ions thermalize to a post-shock temperature proportional to $A$. When diffusive shock acceleration is efficient, ions develop a non-thermal tail whose extent scales with $Z$ and whose normalization is enhanced as $(A/Z)^2$, so that incompletely-ionized heavy ions are preferentially accelerated. Read More


Advances in ultra-intense laser technology are enabling, for the first time, relativistic intensities at mid-infrared (mid-IR) wavelengths. Anticipating further experimental research in this domain, we present high-resolution two dimensional Particle-in-Cell (PIC) simulation results using the Large- Scale Plasma (LSP) code that explore intense mid-IR laser interactions with dense targets. We present the results of thirty PIC simulations over a wide range of intensities (0. Read More


To properly describe heating in weakly collisional turbulent plasmas such as the solar wind, inter-particle collisions should be taken into account. Collisions can convert ordered energy into heat by means of irreversible relaxation towards the thermal equilibrium. Recently, Pezzi et al. Read More


In this paper, by comparing the time scales associated with the velocity relaxation and correlation time of the random force due to dust charge fluctuations, memory effects in the velocity relaxation of an isolated dust particle exposed to the random force due to dust charge fluctuations are considered, and the velocity relaxation process of the dust particle is considered as a non-Markovian stochastic process. Considering memory effects in the velocity relaxation process of the dust particle yields a retarded friction force, which is introduced by a memory kernel in the fractional Langevin equation. The fluctuation-dissipation theorem for the dust grain is derived from this equation. Read More


The effect of radiative heat-loss function and finite ion Larmor radius (FLR) corrections on the thermal instability of infinite homogeneous viscous plasma has been investigated incorporating the effects of thermal conductivity and finite electrical resistivity for the formation of a molecular cloud. The general dispersion relation is derived using the normal mode analysis method with the help of relevant linearized perturbation equations of the problem. Furthermore the wave propagation along and perpendicular to the direction of external magnetic field has been discussed. Read More


A general relation is derived between the linear and second-order nonlinear ac conductivities of an electron system at frequencies below the interparticle scattering rate. In this hydrodynamic regime the temperature dependence and the tensorial structure of the nonlinear conductivity are shown to be different from their counterparts in the more familiar kinetic regime of higher frequencies. The obtained formulas are valid for systems with an arbitrary Dirac-like dispersion, either massive or massless, and subsume known results for free-space plasmas and solid-state electron gases. Read More


In this paper, a reduced model of quasilinear diffusion by a small Larmor radius approximation is derived to couple the Maxwell's equations and the Fokker-Planck equation self-consistently for ion cyclotron range of frequency waves in a tokamak. The reduced model ensures the important properties of the full model by Kennel-Engelmann diffusion, such as diffusion directions, wave polarizations, and H-theorem. The kinetic energy change (W-dot) is used to derive the reduced model diffusion coefficients for the fundamental damping and the second harmonic damping to the lowest order of the finite Larmor radius expansion. Read More