Spatial proximity effects on the excitation of Sheath RF Voltages by evanescent Slow Waves in the Ion Cyclotron Range of Frequencies

We investigate theoretically how sheath radio-frequency (RF) oscillations relate to the spatial structure of the near RF parallel electric field E// emitted by Ion Cyclotron (IC) wave launchers. We use a simple model of Slow Wave (SW) evanescence coupled with Direct Current (DC) plasma biasing via sheath boundary conditions in a 3D parallelepiped filled with homogeneous cold magnetized plasma. Within a "wide sheaths" asymptotic regime, valid for large-amplitude near RF fields, the RF part of this simple RF+DC model becomes linear: the sheath oscillating voltage VRF at open field line boundaries can be re-expressed as a linear combination of individual contributions by every emitting point in the input field map. SW evanescence makes individual contributions all the larger as the wave emission point is located closer to the sheath walls. The decay of |VRF| with the emission point/sheath poloidal distance involves the transverse SW evanescence length and the radial protrusion depth of lateral boundaries. The decay of |VRF| with the emitter/sheath parallel distance is quantified as a function of the parallel SW evanescence length and the parallel connection length of open magnetic field lines. For realistic geometries and target SOL plasmas, poloidal decay occurs over a few centimeters. Typical parallel decay lengths for |VRF| are found smaller than IC antenna parallel extension. Oscillating sheath voltages at IC antenna side limiters are therefore mainly sensitive to E// emission by active or passive conducting elements near these limiters, as suggested by recent experimental observations. Parallel proximity effects could also explain why sheath oscillations persist with antisymmetric strap toroidal phasing, despite the parallel anti-symmetry of the radiated field map. They could finally justify current attempts at reducing the RF fields induced near antenna boxes to attenuate sheath oscillations in their vicinity.

Similar Publications

The XGC1 edge gyrokinetic code is used for a high fidelity prediction for the width of the heat-flux to divertor plates in attached plasma condition. The simulation results are validated against the empirical scaling $\lambda_q \propto 1/B_P^\gamma$ obtained from present tokamak devices, where $\lambda_q$ is the divertor heat-flux width mapped to the outboard midplane and $\gamma=1.19$ as defined by T. Read More

Simulations using the fully kinetic neoclassical code XGCa were undertaken to explore the impact of kinetic effects on scrape-off layer (SOL) physics in DIII-D H-mode plasmas. XGCa is a total-f, gyrokinetic code which self-consistently calculates the axisymmetric electrostatic potential and plasma dynamics, and includes modules for Monte Carlo neutral transport. Previously presented XGCa results showed several noteworthy features, including large variations of ion density and pressure along field lines in the SOL, experimentally relevant levels of SOL parallel ion flow (Mach number~0. Read More

Transport barrier formation and its relation to sheared flows in fluids and plasmas are of fundamental interest in various natural and laboratory observations and of critical importance in achieving an economical energy production in a magnetic fusion device. Here we report the first observation of an edge transport barrier formation event in a gyrokinetic simulation carried out in a realistic tokamak edge geometry. The results show that turbulent Reynolds stress driven sheared ExB flows act in concert with neoclassical orbit loss to quench turbulent transport and form a transport barrier just inside the last closed magnetic flux surface. Read More

In a wide class of physical systems, diffeomorphisms in the state space leave the amount of entropy produced per unit time inside the bulk of the system unaffected [M. Polettini et al., 12th Joint European Thermodynamics Conference, Brescia, Italy, July 1-5, 2013]. Read More

Magnetic turbulence in the solar wind is treated from the point of view of electrodynamics. This can be done based on the use of Poynting's theorem attributing all turbulent dynamics to the spectrum of turbulent conductivity. For two directions of propagation of the turbulent fluctuations of the electromagnetic field with respect to the mean plus external magnetic fields an expression is constructed for the spectrum of turbulent dissipation. Read More

We report an accessible and robust tool for evaluating the effects of Coulomb collisions on a test particle in a plasma that obeys Maxwell-J\"uttner statistics. The implementation is based on the Beliaev-Budker collision integral which allows both the test particle and the background plasma to be relativistic. The integration method supports adaptive time stepping, which is shown to greatly improve the computational efficiency. Read More

The wealth of work in backward Raman amplification in plasma has focused on the extreme intensity limit, however backward Raman amplification may also provide an effective and practical mechanism for generating intense, broad bandwidth, long-wavelength infrared radiation (LWIR). An electromagnetic simulation coupled with a relativistic cold fluid plasma model is used to demonstrate the generation of picosecond pulses at a wavelength of 10 microns with terawatt powers through backward Raman amplification. The effects of collisional damping, Landau damping, pump depletion, and wave breaking are examined, as well as the resulting design considerations for a LWIR Raman amplifier. Read More

The anti-Stokes scattering and Stokes scattering in stimulated Brillouin scattering (SBS) cascade have been researched by the Vlasov-Maxwell simulation. In the high-intensity laser-plasmas interaction, the stimulated anti-Stokes Brillouin scattering (SABS) will occur after the second stage SBS rescattering. The mechanism of SABS has been put forward to explain this phenomenon. Read More

In this work, we study the outward propagation of temperature perturbations. For this purpose, we apply an advanced analysis technique, the Transfer Entropy, to ECE measurements performed in ECR heated discharges at the low-shear stellarator TJ-II. We observe that the propagation of these perturbations is not smooth, but is slowed down at specific radial positions, near 'trapping zones' characterized by long time lags with respect to the perturbation origin. Read More

We study the dynamics of seeded plasma blobs and depletions in an (effective) gravitational field. For incompressible flows the radial center of mass velocity of blobs and depletions is proportional to the square root of their initial cross-field size and amplitude. If the flows are compressible, this scaling holds only for ratios of amplitude to size larger than a critical value. Read More