BAT AGN Spectroscopic Survey - IV: Near-Infrared Coronal Lines, Hidden Broad Lines, and Correlation with Hard X-ray Emission

We provide a comprehensive census of the near-Infrared (NIR, 0.8-2.4 $\mu$m) spectroscopic properties of 102 nearby (z < 0.075) active galactic nuclei (AGN), selected in the hard X-ray band (14-195 keV) from the Swift-Burst Alert Telescope (BAT) survey. With the launch of the James Webb Space Telescope this regime is of increasing importance for dusty and obscured AGN surveys. We measure black hole masses in 68% (69/102) of the sample using broad emission lines (34/102) and/or the velocity dispersion of the Ca II triplet or the CO band-heads (46/102). We find that emission line diagnostics in the NIR are ineffective at identifying bright, nearby AGN galaxies because ([Fe II] 1.257$\mu$m/Pa$\beta$ and H$_2$ 2.12$\mu$m/Br$\gamma$) identify only 25% (25/102) as AGN with significant overlap with star forming galaxies and only 20% of Seyfert 2 have detected coronal lines (6/30). We measure the coronal line emission in Seyfert 2 to be weaker than in Seyfert 1 of the same bolometric luminosity suggesting obscuration by the nuclear torus. We find that the correlation between the hard X-ray and the [Si VI] coronal line luminosity is significantly better than with the [O III] luminosity. Finally, we find 3/29 galaxies (10%) that are optically classified as Seyfert 2 show broad emission lines in the NIR. These AGN have the lowest levels of obscuration among the Seyfert 2s in our sample ($\log N_{\rm H} < 22.43$ cm$^{-2}$), and all show signs of galaxy-scale interactions or mergers suggesting that the optical broad emission lines are obscured by host galaxy dust.

Comments: 38 pages, 19 figures. Accepted for publication in MNRAS

Similar Publications

We report on subarcsecond observations of complex organic molecules (COMs) in the high-mass protostar IRAS20126+4104 with the Plateau de Bure Interferometer in its most extended configurations. In addition to the simple molecules SO, HNCO and H2-13CO, we detect emission from CH3CN, CH3OH, HCOOH, HCOOCH3, CH3OCH3, CH3CH2CN, CH3COCH3, NH2CN, and (CH2OH)2. SO and HNCO present a X-shaped morphology consistent with tracing the outflow cavity walls. Read More

The phase transition responsible for axion dark matter production can create large amplitude isocurvature perturbations which collapse into dense objects known as axion miniclusters. We use microlensing data from the EROS survey, and from recent observations with the Subaru Hyper Suprime Cam to place constraints on the minicluster scenario. We compute the microlensing event rate for miniclusters treating them as spatially extended objects with an extended mass function. Read More


Most galactic nuclei harbor a massive black hole (MBH), whose birth and evolution are closely linked to those of its host galaxy. The unique conditions near the MBH: high velocity and density in the steep potential of a massive singular relativistic object, lead to unusual modes of stellar birth, evolution, dynamics and death. A complex network of dynamical mechanisms, operating on multiple timescales, deflect stars to orbits that intercept the MBH. Read More

Blazars are active galactic nuclei (AGN) whose relativistic jets point nearly to the line of sight. Their compact radio structure can be imaged with very long baseline interferometry (VLBI) on parsec scales. Blazars at extremely high redshifts provide a unique insight into the AGN phenomena in the early Universe. Read More

We study the significance of mergers in the quenching of star formation in galaxies at z~1 by examining their color-mass distributions for different morphology types. We perform two-dimensional light profile fits to GOODS iz images of ~5000 galaxies and X-ray selected active galactic nucleus (AGN) hosts in the CANDELS/GOODS-north and south fields in the redshift range 0.7Read More

The origin and life-cycle of molecular clouds are still poorly constrained, despite their importance for understanding the evolution of the interstellar medium. We have carried out a systematic, homogeneous, spectroscopic survey of the inner Galactic plane, in order to complement the many continuum Galactic surveys available with crucial distance and gas-kinematic information. Our aim is to combine this data set with recent infrared to sub-millimetre surveys at similar angular resolutions. Read More

The Orion Nebula Cluster toward the HII region M42 is the most outstanding young cluster at the smallest distance 410pc among the rich high-mass stellar clusters. By newly analyzing the archival molecular data of the 12CO(J=1-0) emission at 21" resolution, we identified at least three pairs of complementary distributions between two velocity components at 8km/s and 13km/s. We present a hypothesis that the two clouds collided with each other and triggered formation of the high-mass stars, mainly toward two regions including the nearly ten O stars, theta1 Ori and theta2 Ori, in M42 and the B star, NU Ori, in M43. Read More

[Abridged] We present spectroscopic observations in H$_{2}$O, CO and related species with \textit{Herschel} HIFI and PACS, as well as ground-based follow-up with the JCMT and APEX in CO, HCO$^{+}$ and isotopologues, of a sample of 49 nearby ($d<$500\,pc) candidate protostars. These data are used to study the outflow and envelope properties of these sources. We also compile their continuum SEDs in order to constrain their physical properties. Read More

N-methylformamide, CH3NHCHO, may be an important molecule for interstellar pre-biotic chemistry because it contains a peptide bond. The rotational spectrum of the most stable trans conformer of CH3NHCHO is complicated by strong torsion-rotation interaction due to the low barrier of the methyl torsion. We use two absorption spectrometers in Kharkiv and Lille to measure the rotational spectra over 45--630 GHz. Read More

The evolution of main sequence binaries resided in the galactic centre is influenced a lot by the central super massive black hole (SMBH). Due to this perturbation, the stars in a dense environment are likely to experience mergers or collisions through secular or non-secular interactions. In this work, we study the dynamics of the stellar binaries at galactic center, perturbed by another distant SMBH. Read More