Investigation of optimal control problems governed by a time-dependent Kohn-Sham model

Many application models in quantum physics and chemistry require to control multi-electron systems to achieve a desired target configuration. This challenging task appears possible in the framework of time-dependent density functional theory (TDDFT) that allows to describe these systems while avoiding the high dimensionality resulting from the multi-particle Schr\"{o}dinger equation. For this purpose, the theory and numerical solution of optimal control problems governed by a Kohn-Sham TDDFT model are investigated, considering different objectives and a bilinear control mechanism. Existence of optimal control solutions and their characterization as solutions to Kohn-Sham TDDFT optimality systems are discussed. To validate this control framework, a time-splitting discretization of the optimality systems and a nonlinear conjugate gradient scheme are implemented. Results of numerical experiments demonstrate the computational capability of the proposed control approach.


Similar Publications

In this paper, we study an optimal excess-of-loss reinsurance and investment problem for an insurer in defaultable market. The insurer can buy reinsurance and invest in the following securities: a bank account, a risky asset with stochastic volatility and a defaultable corporate bond. We discuss the optimal investment strategy into two subproblems: a pre-default case and a post-default case. Read More


There is widespread sentiment that it is not possible to effectively utilize fast gradient methods (e.g. Nesterov's acceleration, conjugate gradient, heavy ball) for the purposes of stochastic optimization due to their instability and error accumulation, a notion made precise in d'Aspremont 2008 and Devolder, Glineur, and Nesterov 2014. Read More


Reference [11] investigated the almost sure weak convergence of a block-coordinate fixed point algorithm and discussed its application to nonlinear analysis and optimization. This algorithm features random sweeping rules to select arbitrarily the blocks of variables that are activated over the course of the iterations and it allows for stochastic errors in the evaluation of the operators. The present paper establishes results on the mean-square and linear convergence of the iterates. Read More


In this paper, we investigate an optimal design problem motivated by some issues arising in population dynamics. In a nutshell, we aim at determining the optimal shape of a region occupied by resources for maximizing the survival ability of a species in a given box and we consider the general case of Robin boundary conditions on its boundary. Mathematically, this issue can be modeled with the help of an extremal indefinite weight linear eigenvalue problem. Read More


In this paper, we study the generalized mean-field stochastic control problem when the usual stochastic maximum principle (SMP) is not applicable due to the singularity of the Hamiltonian function. In this case, we derive a second order SMP. We introduce the adjoint process by the generalized mean-field backward stochastic differential equation. Read More


In this paper, we study the stochastic gradient descent (SGD) method for the nonconvex nonsmooth optimization, and propose an accelerated SGD method by combining the variance reduction technique with Nesterov's extrapolation technique. Moreover, based on the local error bound condition, we establish the linear convergence of our method to obtain a stationary point of the nonconvex optimization. In particular, we prove that not only the sequence generated linearly converges to a stationary point of the problem, but also the corresponding sequence of objective values is linearly convergent. Read More


In many smart infrastructure applications flexibility in achieving sustainability goals can be gained by engaging end-users. However, these users often have heterogeneous preferences that are unknown to the decision-maker tasked with improving operational efficiency. Modeling user interaction as a continuous game between non-cooperative players, we propose a robust parametric utility learning framework that employs constrained feasible generalized least squares estimation with heteroskedastic inference. Read More


This paper considers the problem of decentralized optimization with a composite objective containing smooth and non-smooth terms. To solve the problem, a proximal-gradient scheme is studied. Specifically, the smooth and nonsmooth terms are dealt with by gradient update and proximal update, respectively. Read More


Many real-world control systems, such as the smart grid and human sensorimotor control systems, have decentralized components that react quickly using local information and centralized components that react slowly using a more global view. This paper seeks to provide a theoretical framework for how to design controllers that are decomposed across timescales in this way. The framework is analogous to how the network utility maximization framework uses optimization decomposition to distribute a global control problem across independent controllers, each of which solves a local problem; except our goal is to decompose a global problem temporally, extracting a timescale separation. Read More


We revisit closed-loop performance guarantees for Model Predictive Control in the deterministic and stochastic cases, which extend to novel performance results applicable to receding horizon control of Partially Observable Markov Decision Processes. While performance guarantees similar to those achievable in deterministic Model Predictive Control can be obtained even in the stochastic case, the presumed stochastic optimal control law is intractable to obtain in practice. However, this intractability relaxes for a particular instance of stochastic systems, namely Partially Observable Markov Decision Processes, provided reasonable problem dimensions are taken. Read More