Entanglement monotones and transformations of symmetric bipartite states

The primary goal in the study of entanglement as a resource theory is to find conditions that determine when one quantum state can or cannot be transformed into another via LOCC operations. This is typically done through entanglement monotones or conversion witnesses. Such quantities cannot be computed for arbitrary quantum states in general, but it is useful to consider classes of symmetric states for which closed-form expressions can be found. In this paper, we show how to compute the convex roof of any entanglement monotone for all Werner states. The convex roofs of the well-known Vidal monotones are computed for all isotropic states, and we show how this method can generalize to other entanglement measures and other types of symmetries as well. We also present necessary and sufficient conditions that determine when a pure bipartite state can be deterministically converted into a Werner or isotropic state.

Comments: 17 pages, 7 figures. Comments welcome

Similar Publications

Quantum computing is moving rapidly to the point of deployment of technology. Functional quantum devices will require the ability to correct error in order to be scalable and effective. A leading choice of error correction, in particular for modular or distributed architectures, is the surface code with logical two-qubit operations realised via "lattice surgery". Read More

We provide a new way to bound the security of quantum key distribution using only the diagrammatic behavior of complementary observables and essential uniqueness of purification for quantum channels. We begin by demonstrating a proof in the simplest case, where the eavesdropper doesn't noticeably disturb the channel at all and has no quantum memory. We then show how this case extends with almost no effort to account for quantum memory and noise. Read More

Tower of States analysis is a powerful tool for investigating phase transitions in condensed matter systems. Spontaneous symmetry breaking implies a specific structure of the energy eigenvalues and their corresponding quantum numbers on finite systems. In these lecture notes we explain the group representation theory used to derive the spectral structure for several scenarios of symmetry breaking. Read More

We construct $d\times d$ dimensional bound entangled states, which violate for any $d>2$ a bipartite Bell inequality introduced in this paper. We conjecture that the proposed class of Bell inequalities act as dimension witnesses for bound entangled states: for any $d>2$, there exists a Bell inequality from this class, which can be violated with bound entangled states only if their Hilbert space dimension is at least $d\times d$. Numerics supports this conjecture up to $d=8$. Read More

We consider the radiative properties of a system of two identical correlated atoms interacting with the electromagnetic field in its vacuum state in the presence of a generic dielectric environment. We suppose that the two emitters are prepared in a symmetric or antisymmetric superposition of one ground state and one excited-state and we evaluate the transition rate to the collective ground state, showing distinctive cooperative radiative features. Using a macroscopic quantum electrodynamics approach to describe the electromagnetic field, we first obtain an analytical expression for the decay rate of the two entangled two-level atoms in terms of the Green's tensor of the generic external environment. Read More

Planar photonic nanostructures have recently attracted a great deal of attention for quantum optics applications. In this article, we carry out full 3D numerical simulations to fully account for all radiation channels and thereby quantify the coupling efficiency of a quantum emitter embedded in a photonic-crystal waveguide. We utilize mixed boundary conditions by combining active Dirichlet boundary conditions for the guided mode and perfectly-matched layers for the radiation modes. Read More

Let $V=\bigotimes_{k=1}^{N} V_{k}$ be the $N$ spin-$j$ Hilbert space with $d=2j+1$-dimensional single particle space. We fix an orthonormal basis $\{|m_i\rangle\}$ for each $V_{k}$, with weight $m_i\in \{-j,\ldots j\}$. Let $V_{(w)}$ be the subspace of $V$ with a constant weight $w$, with an orthonormal basis $\{|m_1,\ldots,m_N\rangle\}$ subject to $\sum_k m_k=w$. Read More

We investigate the initial-boundary value problem for the general three-component nonlinear Schrodinger (gtc-NLS) equation with a 4x4 Lax pair on a finite interval by extending the Fokas unified approach. The solutions of the gtc-NLS equation can be expressed in terms of the solutions of a 4x4 matrix Riemann-Hilbert (RH) problem formulated in the complex k-plane. Moreover, the relevant jump matrices of the RH problem can be explicitly found via the three spectral functions arising from the initial data, the Dirichlet-Neumann boundary data. Read More

We investigate the initial-boundary value problem for the integrable spin-1 Gross-Pitaevskii (GP) equations with a 4x4 Lax pair on the half-line. The solution of this system can be obtained in terms of the solution of a 4x4 matrix Riemann-Hilbert (RH) problem formulated in the complex k-plane. The relevant jump matrices of the RH problem can be explicitly found using the two spectral functions s(k) and S(k), which can be defined by the initial data, the Dirichlet-Neumann boundary data at x=0. Read More

There is a long history of representing a quantum state using a quasi-probability distribution: a distribution allowing negative values. In this paper we extend such representations to deal with quantum channels. The result is a convex, strongly monoidal, functorial embedding of the category of trace preserving completely positive maps into the category of quasi-stochastic matrices. Read More