Joint CTC-Attention based End-to-End Speech Recognition using Multi-task Learning

Recently, there has been an increasing interest in end-to-end speech recognition that directly transcribes speech to text without any predefined alignments. One approach is the attention-based encoder-decoder framework that learns a mapping between variable-length input and output sequences in one step using a purely data-driven method. The attention model has often been shown to improve the performance over another end-to-end approach, the Connectionist Temporal Classification (CTC), mainly because it explicitly uses the history of the target character without any conditional independence assumptions. However, we observed that the attention model has shown poor results especially in noisy condition and is hard to be trained in the initial training stage with long input sequences, as compared with CTC. This is because the attention model is too flexible to predict proper alignments in such cases due to the lack of left-to-right constraints as used in CTC. This paper presents a novel method for end-to-end speech recognition to improve robustness and achieve fast convergence by using a joint CTC-attention model within the multi-task learning framework, thereby mitigating the alignment issue. An experiment on the WSJ and CHiME-4 tasks demonstrates its advantages over both the CTC and attention-based encoder-decoder baselines, showing 6.6-10.3% relative improvements in Character Error Rate (CER).

Similar Publications

During language acquisition, infants have the benefit of visual cues to ground spoken language. Robots similarly have access to audio and visual sensors. Recent work has shown that images and spoken captions can be mapped into a meaningful common space, allowing images to be retrieved using speech and vice versa. Read More

Unsupervised segmentation and clustering of unlabelled speech are core problems in zero-resource speech processing. Most competitive approaches lie at methodological extremes: some follow a Bayesian approach, defining probabilistic models with convergence guarantees, while others opt for more efficient heuristic techniques. Here we introduce an approximation to a segmental Bayesian model that falls in between, with a clear objective function but using hard clustering and segmentation rather than full Bayesian inference. Read More

We propose a series of recurrent and contextual neural network models for multiple choice visual question answering on the Visual7W dataset. Motivated by divergent trends in model complexities in the literature, we explore the balance between model expressiveness and simplicity by studying incrementally more complex architectures. We start with LSTM-encoding of input questions and answers; build on this with context generation by LSTM-encodings of neural image and question representations and attention over images; and evaluate the diversity and predictive power of our models and the ensemble thereof. Read More

Knowledge bases of real-world facts about entities and their relationships are useful resources for a variety of natural language processing tasks. However, because knowledge bases are typically incomplete, it is useful to be able to perform knowledge base completion, i.e. Read More

Commercial establishments like restaurants, service centres and retailers have several sources of customer feedback about products and services, most of which need not be as structured as rated reviews provided by services like Yelp, or Amazon, in terms of sentiment conveyed. For instance, Amazon provides a fine-grained score on a numeric scale for product reviews. Some sources, however, like social media (Twitter, Facebook), mailing lists (Google Groups) and forums (Quora) contain text data that is much more voluminous, but unstructured and unlabelled. Read More

In state-of-the-art Neural Machine Translation, an attention mechanism is used during decoding to enhance the translation. At every step, the decoder uses this mechanism to focus on different parts of the source sentence to gather the most useful information before outputting its target word. Recently, the effectiveness of the attention mechanism has also been explored for multimodal tasks, where it becomes possible to focus both on sentence parts and image regions. Read More

Feedforward Neural Network (FNN)-based language models estimate the probability of the next word based on the history of the last N words, whereas Recurrent Neural Networks (RNN) perform the same task based only on the last word and some context information that cycles in the network. This paper presents a novel approach, which bridges the gap between these two categories of networks. In particular, we propose an architecture which takes advantage of the explicit, sequential enumeration of the word history in FNN structure while enhancing each word representation at the projection layer through recurrent context information that evolves in the network. Read More

Word embeddings are a powerful approach for unsupervised analysis of language. Recently, Rudolph et al. (2016) developed exponential family embeddings, which cast word embeddings in a probabilistic framework. Read More

Despite the remarkable progress recently made in distant speech recognition, state-of-the-art technology still suffers from a lack of robustness, especially when adverse acoustic conditions characterized by non-stationary noises and reverberation are met. A prominent limitation of current systems lies in the lack of matching and communication between the various technologies involved in the distant speech recognition process. The speech enhancement and speech recognition modules are, for instance, often trained independently. Read More

We propose a supervised algorithm for generating type embeddings in the same semantic vector space as a given set of entity embeddings. The algorithm is agnostic to the derivation of the underlying entity embeddings. It does not require any manual feature engineering, generalizes well to hundreds of types and achieves near-linear scaling on Big Graphs containing many millions of triples and instances by virtue of an incremental execution. Read More