Joint CTC-Attention based End-to-End Speech Recognition using Multi-task Learning

Recently, there has been an increasing interest in end-to-end speech recognition that directly transcribes speech to text without any predefined alignments. One approach is the attention-based encoder-decoder framework that learns a mapping between variable-length input and output sequences in one step using a purely data-driven method. The attention model has often been shown to improve the performance over another end-to-end approach, the Connectionist Temporal Classification (CTC), mainly because it explicitly uses the history of the target character without any conditional independence assumptions. However, we observed that the attention model has shown poor results especially in noisy condition and is hard to be trained in the initial training stage with long input sequences, as compared with CTC. This is because the attention model is too flexible to predict proper alignments in such cases due to the lack of left-to-right constraints as used in CTC. This paper presents a novel method for end-to-end speech recognition to improve robustness and achieve fast convergence by using a joint CTC-attention model within the multi-task learning framework, thereby mitigating the alignment issue. An experiment on the WSJ and CHiME-4 tasks demonstrates its advantages over both the CTC and attention-based encoder-decoder baselines, showing 6.6-10.3% relative improvements in Character Error Rate (CER).

Similar Publications

This paper addresses the problem of predicting popularity of comments in an online discussion forum using reinforcement learning, particularly addressing two challenges that arise from having natural language state and action spaces. First, the state representation, which characterizes the history of comments tracked in a discussion at a particular point, is augmented to incorporate the global context represented by discussions on world events available in an external knowledge source. Second, a two-stage Q-learning framework is introduced, making it feasible to search the combinatorial action space while also accounting for redundancy among sub-actions. Read More

Relation detection is a core component for many NLP applications including Knowledge Base Question Answering (KBQA). In this paper, we propose a hierarchical recurrent neural network enhanced by residual learning that detects KB relations given an input question. Our method uses deep residual bidirectional LSTMs to compare questions and relation names via different hierarchies of abstraction. Read More

In this paper we describe our attempt at producing a state-of-the-art Twitter sentiment classifier using Convolutional Neural Networks (CNNs) and Long Short Term Memory (LSTMs) networks. Our system leverages a large amount of unlabeled data to pre-train word embeddings. We then use a subset of the unlabeled data to fine tune the embeddings using distant supervision. Read More

We investigate neural techniques for end-to-end computational argumentation mining. We frame the problem as a token-based dependency parsing as well as a token-based sequence tagging model, including a multi-task learning setup. Contrary to models that operate on the argument component level, we find that framing the problem as dependency parsing leads to subpar performance results. Read More

Existing studies on semantic parsing mainly focus on the in-domain setting. We formulate cross-domain semantic parsing as a domain adaptation problem: train a semantic parser on some source domains and then adapt it to the target domain. Due to the diversity of logical forms in different domains, this problem presents unique and intriguing challenges. Read More

The proliferation of social media in communication and information dissemination has made it an ideal platform for spreading rumors. Automatically debunking rumors at their stage of diffusion is known as \textit{early rumor detection}, which refers to dealing with sequential posts regarding disputed factual claims with certain variations and highly textual duplication over time. Thus, identifying trending rumors demands an efficient yet flexible model that is able to capture long-range dependencies among postings and produce distinct representations for the accurate early detection. Read More

Media is full of false claims. Even Oxford Dictionaries named "post-truth" as the word of 2016. This makes it more important than ever to build systems that can identify the veracity of a story, and the kind of discourse there is around it. Read More

Recent studies have shown that embedding textual relations using deep neural networks greatly helps relation extraction. However, many existing studies rely on supervised learning; their performance is dramatically limited by the availability of training data. In this work, we generalize textual relation embedding to the distant supervision setting, where much larger-scale but noisy training data is available. Read More

Knowledge bases are important resources for a variety of natural language processing tasks but suffer from incompleteness. We propose a novel embedding model, \emph{ITransF}, to perform knowledge base completion. Equipped with a sparse attention mechanism, ITransF discovers hidden concepts of relations and transfer statistical strength through the sharing of concepts. Read More

We propose a multi-view network for text classification. Our method automatically creates various views of its input text, each taking the form of soft attention weights that distribute the classifier's focus among a set of base features. For a bag-of-words representation, each view focuses on a different subset of the text's words. Read More