Sets of FCS experiments to quantify free diffusion coefficients in reaction-diffusion systems. The case of Ca2+ and its dyes

Many cell signaling pathways involve the diffusion of messengers that bind/unbind to intracellular components. Quantifying their net transport rate under different conditions, then requires having separate estimates of their free diffusion coefficient and binding/unbinding rates. In this paper, we show how performing sets of Fluorescence Correlation Spectroscopy (FCS) experiments under different conditions, it is possible to quantify free diffusion coefficients and on and off rates of reaction-diffusion systems. We develop the theory and present a practical implementation for the case of the universal second messenger, calcium (Ca$^{2+}$) and single-wavelength dyes that increase their fluorescence upon Ca$^{2+}$ binding. We validate the approach with experiments performed in aqueous solutions containing Ca$^{2+}$ and Fluo4 dextran (both in its High and Low Affinity versions). Performing FCS experiments with tetramethylrhodamine-dextran in Xenopus laevis oocytes, we infer the corresponding free diffusion coefficients in the cytosol of these cells. Our approach can be extended to other physiologically relevant reaction-diffusion systems to quantify biophysical parameters that determine the dynamics of various variables of interest.

Comments: 32 pages, 7 figures

Similar Publications

During asymmetric cell divisions, cortical dyneins generate forces essential to position the spindle after polarity cues, prescribing daughter cells fate. In nematode zygote, cortical dynein pulls on microtubules transiently, raising the question of its targeting and dynamics. Tracking and fluorescence correlation spectroscopy revealed that in the cytoplasm, dynein spots displayed directed motions toward the cortex, localized at microtubule plus-ends through EBP-2/EB but are not actively transported. Read More


The plant hormones brassinosteroid (BR) and gibberellin (GA) have important roles in a wide range of processes involved in plant growth and development. The BR signalling pathway acts by altering the phosphorylation state of its transcription factors BZR1/2, whereas the GA signalling pathway acts by reducing the stability of its transcription factor DELLA. Both signalling pathways include a negative feedback, with high levels of BR causing increased repression of key BR-biosynthetic genes mediated by BZR1/2, and high levels of GA causing decreased stability of DELLA, where DELLA is responsible for activating key genes involved in GA biosynthesis. Read More


We develope a two-species exclusion process with a distinct pair of entry and exit sites for each species of rigid rods. The relatively slower forward stepping of the rods in an extended bottleneck region, located in between the two entry sites, controls the extent of interference of the co-directional flow of the two species of rods. The relative positions of the sites of entry of the two species of rods with respect to the location of the bottleneck are motivated by a biological phenomenon. Read More


Via a concomitant communication (the first part of my work), I have conclusively debunked the prevailing explanations for mitochondrial oxidative phosphorylation and established the need for a novel rationale to account for the reaction paradigm. Towards the same, murburn concept is hereby floated as a viable explanation (in the second part of my work). It is proposed that the inner mitochondrial membrane (harboring the various metal and flavin enzyme complexes) serves as means to confine and stabilize radical reactions, which effectively couple and bring about ATP synthesis in the proton-deficient microcosm. Read More


Robustness of spatial pattern against perturbations is an indispensable property of developmental processes for organisms, which need to adapt to changing environments. Although specific mechanisms for this robustness have been extensively investigated, little is known about a general mechanism for achieving robustness in reaction-diffusion systems. Here, we propose a buffered reaction-diffusion system, in which active states of chemicals mediated by buffer molecules contribute to reactions, and demonstrate that robustness of the pattern wavelength is achieved by the dynamics of the buffer molecule. Read More


Here we report on a set of programs developed at the ZMBH Bio-Imaging Facility for tracking real-life images of cellular processes. These programs perform 1) automated tracking; 2) quantitative and comparative track analyses of different images in different groups; 3) different interactive visualization schemes; and 4) interactive realistic simulation of different cellular processes for validation and optimal problem-specific adjustment of image acquisition parameters (tradeoff between speed, resolution, and quality with feedback from the very final results). The collection of programs is primarily developed for the common bio-image analysis software ImageJ (as a single Java Plugin). Read More


We study a generic one-dimensional model for an intracellular cargo driven by N motor proteins against an external applied force. The model includes motor-cargo and motor-motor interactions. The cargo motion is described by an over-damped Langevin equation, while motor dynamics is specified by hopping rates which follow a local detailed balance condition with respect to change in energy per hopping event. Read More


Allosteric molecules serve as regulators of cellular activity across all domains of life. We present a general theory of allosteric transcriptional regulation that permits quantitative predictions for how physiological responses are tuned to environmental stimuli. To test the model's predictive power, we apply it to the specific case of the ubiquitous simple repression motif in bacteria. Read More


Efficient bacterial chromosome segregation typically requires the coordinated action of a three-components, ATP-fueled machinery called the partition complex. We present a phenomenological model accounting for the dynamic activity of this system. The model is obtained by coupling simple linear reaction-diffusion equations with a proteophoresis, or "volumetric" chemophoresis, force field. Read More


As a cheap and safe antimalarial agent, chloroquine (CQ) has been used in the battle against malaria for more than half century. However, the mechanism of CQ action and resistance in Plasmodium falciparum remains elusive. Based on further analysis of our published experimental results, we propose that the mechanism of CQ action and resistance might be closely linked with cell-cycle-associated amplified genomic-DNA fragments (CAGFs, singular form = CAGF) as CQ induces CAGF production in P. Read More