Large X-ray Flares on Stars Detected with MAXI/GSC: A Universal Correlation between the Duration of a Flare and its X-ray Luminosity

23 giant flares from 13 active stars (eight RS CVn systems, one Algol system, three dMe stars and one YSO) were detected during the first two years of our all-sky X-ray monitoring with the gas propotional counters (GSC) of the Monitor of All-sky X-ray Image (MAXI). The observed parameters of all of these MAXI/GSC flares are found to be at the upper ends for stellar flares with the luminosity of 10^(31-34) ergs s-1 in the 2-20 keV band, the emission measure of 10^(54-57) cm-3, the e-folding time of 1 hour to 1.5 days, and the total radiative energy released during the flare of 10^(34-39) ergs. Notably, the peak X-ray luminosity of 5(3-9)*10^33 ergs s-1 in the 2-20 keV band was detected in one of the flares on II Peg, which is one of the, or potentially the, largest ever observed in stellar flares. X-ray flares were detected from GT Mus, V841 Cen, SZ Psc, and TWA-7 for the first time in this survey. Whereas most of our detected sources are multiple-star systems, two of them are single stars (YZ CMi and TWA-7). Among the stellar sources within 100 pc distance, the MAXI/GSC sources have larger rotation velocities than the other sources. This suggests that the rapid rotation velocity may play a key role in generating large flares. Combining the X-ray flare data of nearby stars and the sun, taken from literature and our own data, we discovered a universal correlation of tau~L_X^0.2 for the flare duration tau and the intrinsic X-ray luminosity L_X in the 0.1-100 keV band, which holds for 5 and 12 orders of magnitude in tau and L_X, respectively. The MAXI/GSC sample is located at the highest ends on the correlation.

Comments: to be published in Publications of the Astronomical Society of Japan (PASJ)

Similar Publications

Recently a repeating fast radio burst (FRB) 121102 has been confirmed to be an extragalactic event and a persistent radio counterpart has been identified. While other possibilities are not ruled out, the emission properties are broadly consistent with theoretical suggestions of Murase et al. (2016) for quasi-steady nebula emission from a pulsar-driven supernova remnant as a counterpart of FRBs. Read More

Cosmic ray muons with the average energy of 280 GeV and neutrons produced by muons are detected with the Large Volume Detector at LNGS. We present an analysis of the seasonal variation of the neutron flux on the basis of the data obtained during 15 years. The measurement of the seasonal variation of the specific number of neutrons generated by muons allows to obtaine the variation magnitude of of the average energy of the muon flux at the depth of the LVD location. Read More

XMM-Newton has deeply changed our picture of X-ray emission of hot, massive stars. High-resolution X-ray spectroscopy as well as monitoring of these objects helped us gain a deeper insight into the physics of single massive stars with or without magnetic fields, as well as of massive binary systems, where the stellar winds of both stars interact. These observations also revealed a number of previously unexpected features that challenge our understanding of the dynamics of the stellar winds of massive stars. Read More

We review the physics of GRB production by relativistic jets that start highly opaque near the central source and then expand to transparency. We discuss dissipative and radiative processes in the jet and how radiative transfer shapes the observed nonthermal spectrum released at the photosphere. A comparison of recent detailed models with observations gives estimates for important parameters of GRB jets, such as the Lorentz factor and magnetization. Read More

We examine the 2008-2016 gamma-ray and optical light curves of three bright BL Lac objects, PKS 0716+71, MRK 421, BL Lac, which exhibit large structured variability. We searched for periodicities by using a fully Bayesian approach. For two out of three sources investigated no significant periodic variability was found. Read More

The antiproton-to-proton ratio in the cosmic-ray spectrum is a sensitive probe of new physics. Using recent measurements of the cosmic-ray antiproton and proton fluxes in the energy range of 1-1000 GeV, we study the contribution to the $\bar{p}/p$ ratio from secondary antiprotons that are produced and subsequently accelerated within individual supernova remnants. We consider several well-motivated models for cosmic-ray propagation in the interstellar medium and marginalize our results over the uncertainties related to the antiproton production cross section and the time-, charge-, and energy-dependent effects of solar modulation. Read More

A two-phase description of the quark-nuclear matter hybrid equation of state that takes into account the effect of excluded volume in both the hadronic and the quark-matter phases is introduced. The nuclear phase manifests a reduction of the available volume as density increases, leading to a stiffening of the matter. The quark-matter phase displays a reduction of the effective string-tension in the confining density-functional from available volume contributions. Read More

Affiliations: 1METU, Ankara, Turkey, 2METU, Ankara, Turkey, 3METU, Ankara, Turkey, 4METU, Ankara, Turkey, 5Baskent University, Ankara, Turkey, 6METU, Ankara, Turkey

We represent noise strength analysis of Anomalous X-Ray Pulsars (AXPs) 4U 0142+61, 1RXS J170849.9-400910, 1E 1841-045, 1E 2259+586 and Soft Gamma Repeaters (SGRs) SGR J1833-0832, SWIFT J1822.3-1606 and SWIFT J1834. Read More

Affiliations: 1METU, Ankara, Turkey, 2METU, Ankara, Turkey, 3METU, Ankara, Turkey, 4Baskent University, Ankara, Turkey, 5METU, Ankara, Turkey

We analyse archival CGRO-BATSE X-ray flux and spin frequency measurements of GX 1+4 over a time span of 3000 days. We systematically search for time dependent variations of torque luminosity correlation. Our preliminary results indicate that the correlation shifts from being positive to negative on time scales of few 100 days. Read More