The angular power spectrum of the diffuse gamma-ray emission as measured by the Fermi Large Area Telescope and constraints on its Dark Matter interpret

The isotropic gamma-ray background arises from the contribution of unresolved sources, including members of confirmed source classes and proposed gamma-ray emitters such as the radiation induced by dark matter annihilation and decay. Clues about the properties of the contributing sources are imprinted in the anisotropy characteristics of the gamma-ray background. We use 81 months of Pass 7 Reprocessed data from the Fermi Large Area Telescope to perform a measurement of the anisotropy angular power spectrum of the gamma-ray background. We analyze energies between 0.5 and 500 GeV, extending the range considered in the previous measurement based on 22 months of data. We also compute, for the first time, the cross-correlation angular power spectrum between different energy bins. We find that the derived angular spectra are compatible with being Poissonian, i.e. constant in multipole. Moreover, the energy dependence of the anisotropy suggests that the signal is due to two populations of sources, contributing, respectively, below and above 2 GeV. Finally, using data from state-of-the-art numerical simulations to model the dark matter distribution, we constrain the contribution from dark matter annihilation and decay in Galactic and extragalactic structures to the measured anisotropy. These constraints are competitive with those that can be derived from the average intensity of the isotropic gamma-ray background. Data are available at https://www-glast.stanford.edu/pub_data/552.

Comments: 51 pages, 39 figures. Data are available at https://www-glast.stanford.edu/pub_data/552

Similar Publications

The discovery of radionuclides like 60Fe with half-lives of million years in deep-sea crusts and sediments offers the unique possibility to date and locate nearby supernovae. We want to quantitatively establish that the 60Fe enhancement is the result of several supernovae which are also responsible for the formation of the Local Bubble, our Galactic habitat. We performed three-dimensional hydrodynamic adaptive mesh refinement simulations (with resolutions down to subparsec scale) of the Local Bubble and the neighbouring Loop I superbubble in different homogeneous, self-gravitating environments. Read More


Theoretical and observational evidences have been recently gained for a two-fold classification of short bursts: 1) short gamma-ray flashes (S-GRFs), with isotropic energy $E_{iso}<10^{52}$~erg and no black hole (BH) formation, and 2) the authentic short gamma-ray bursts (S-GRBs), with isotropic energy $E_{iso}>10^{52}$~erg evidencing a BH formation in the binary neutron star merging process. The signature for the BH formation consists in the on-set of the high energy ($0.1$--$100$~GeV) emission, coeval to the prompt emission, in all S-GRBs. Read More


SS~433 is an X-ray binary and the source of sub-relativistic, precessing, baryonic jets. We present high-resolution spectrograms of SS 433 in the infrared H and K bands. The spectrum is dominated by hydrogen and helium emission lines. Read More


We analyze three scenarios to address the challenge of ultrafast gamma-ray variability reported from active galactic nuclei. We focus on the energy requirements imposed by these scenarios: (i) external cloud in the jet, (ii) relativistic blob propagating through the jet material, and (iii) production of high energy gamma rays in the magnetosphere gaps. We show that while the first two scenarios are not constrained by the flare luminosity, there is a robust upper limit on the luminosity of flares generated in the black hole magnetosphere. Read More


As shown in an earlier paper, in an axially symmetric Szekeres model infinite blueshift can appear only on those rays that intersect the symmetry axis. It was also shown that with the Szekeres mass-dipole superposed on an L--T background any finite $z$ becomes closer to $-1$ and that null geodesics with $z \approx -1$ exist also in a nonsymmetric Szekeres model. Those Szekeres spacetimes were chosen for their simplicity. Read More


Recently, in a study the X-ray flaring activity of Sgr A* with Chandra and XMM-Newton public observations from 1999 to 2014 and 2014 Swift data, it has been argued that the "bright and very bright" flaring rate raised from 2014 Aug. 31. Thanks to 482ks of observations performed in 2015 with Chandra, XMM-Newton and Swift, we test the significance of this rise of flaring rate and determine the threshold of unabsorbed flare flux or fluence leading to any flaring-rate change. Read More


Fast radio bursts, or FRBs, are transient sources of unknown origin. Recent radio and optical observations have provided strong evidence for an extragalactic origin of the phenomenon and the precise localization of the repeating FRB 121102. Observations using the Karl G. Read More


We compile a sample of spectral energy distribution (SED) of 12 GeV radio galaxies (RGs), including eight FR I RGs and four FR II RGs. These SEDs can be represented with the one-zone leptonic model. No significant unification as expected in the unification model is found for the derived jet parameters between FR I RGs and BL Lacertae objects (BL Lacs) and between FR II RGs and flat spectrum radio quasars (FSRQs). Read More


The low-lying energy levels of proton-rich $^{56}$Cu have been extracted using in-beam $\gamma$-ray spectroscopy with the state-of-the-art $\gamma$-ray tracking array GRETINA in conjunction with the S800 spectrograph at the National Superconducting Cyclotron Laboratory at Michigan State University. Excited states in $^{56}$Cu serve as resonances in the $^{55}$Ni(p,$\gamma$)$^{56}$Cu reaction, which is a part of the rp-process in type I x-ray bursts. To resolve existing ambiguities in the reaction Q-value, a more localized IMME mass fit is used resulting in $Q=639\pm82$~keV. Read More