Hitomi constraints on the 3.5 keV line in the Perseus galaxy cluster

Authors: Hitomi Collaboration, Felix A. Aharonian, Hiroki Akamatsu, Fumie Akimoto, Steven W. Allen, Lorella Angelini, Keith A. Arnaud, Marc Audard, Hisamitsu Awaki, Magnus Axelsson, Aya Bamba, Marshall W. Bautz, Roger D. Blandford, Laura W. Brenneman, Gregory V. Brown, Esra Bulbul, Edward M. Cackett, Maria Chernyakova, Meng P. Chiao, Paolo Coppi, Elisa Costantini, Jelle de Plaa, Jan-Willem den Herder, Chris Done, Tadayasu Dotani, Ken Ebisawa, Megan E. Eckart, Teruaki Enoto, Yuichiro Ezoe, Andrew C. Fabian, Carlo Ferrigno, Adam R. Foster, Ryuichi Fujimoto, Yasushi Fukazawa, Akihiro Furuzawa, Massimiliano Galeazzi, Luigi C. Gallo, Poshak Gandhi, Margherita Giustini, Andrea Goldwurm, Liyi Gu, Matteo Guainazzi, Yoshito Haba, Kouichi Hagino, Kenji Hamaguchi, Ilana Harrus, Isamu Hatsukade, Katsuhiro Hayashi, Takayuki Hayashi, Kiyoshi Hayashida, Junko Hiraga, Ann E. Hornschemeier, Akio Hoshino, John P. Hughes, Yuto Ichinohe, Ryo Iizuka, Hajime Inoue, Shota Inoue, Yoshiyuki Inoue, Kazunori Ishibashi, Manabu Ishida, Kumi Ishikawa, Yoshitaka Ishisaki, Masayuki Itoh, Naoko Iyomoto, Jelle S. Kaastra, Timothy Kallman, Tuneyoshi Kamae, Erin Kara, Jun Kataoka, Satoru Katsuda, Junichiro Katsuta, Madoka Kawaharada, Nobuyuki Kawai, Richard L. Kelley, Dmitry Khangulyan, Caroline A. Kilbourne, Ashley L. King, Takao Kitaguchi, Shunji Kitamoto, Tetsu Kitayama, Takayoshi Kohmura, Motohide Kokubun, Shu Koyama, Katsuji Koyama, Peter Kretschmar, Hans A. Krimm, Aya Kubota, Hideyo Kunieda, Philippe Laurent, Francois Lebrun, Shiu-Hang Lee, Maurice Leutenegger, Olivier Limousin, Michael Loewenstein, Knox S. Long, David Lumb, Grzegorz M. Madejski, Yoshitomo Maeda, Daniel Maier, Kazuo Makishima, Maxim Markevitch, Hironori Matsumoto, Kyoko Matsushita, Dan McCammon, Brian R. McNamara, Missagh Mehdipour, Eric D. Miller, Jon M. Miller, Shin Mineshige, Kazuhisa Mitsuda, Ikuyuki Mitsuishi, Takuya Miyazawa, Tsunefumi Mizuno, Hideyuki Mori, Koji Mori, Harvey Moseley, Koji Mukai, Hiroshi Murakami, Toshio Murakami, Richard F. Mushotzky, Takao Nakagawa, Hiroshi Nakajima, Takeshi Nakamori, Toshio Nakano, Shinya Nakashima, Kazuhiro Nakazawa, Kumiko Nobukawa, Masayoshi Nobukawa, Hirofumi Noda, Masaharu Nomachi, Steve L. O'Dell, Hirokazu Odaka, Takaya Ohashi, Masanori Ohno, Takashi Okajima, Naomi Ota, Masanobu Ozaki, Frits Paerels, Stephane Paltani, Arvind Parmar, Robert Petre, Ciro Pinto, Martin Pohl, F. Scott Porter, Katja Pottschmidt, Brian D. Ramsey, Christopher S. Reynolds, Helen R. Russell, Samar Safi-Harb, Shinya Saito, Kazuhiro Sakai, Hiroaki Sameshima, Toru Sasaki, Goro Sato, Kosuke Sato, Rie Sato, Makoto Sawada, Norbert Schartel, Peter J. Serlemitsos, Hiromi Seta, Megumi Shidatsu, Aurora Simionescu, Randall K. Smith, Yang Soong, Lukasz Stawarz, Yasuharu Sugawara, Satoshi Sugita, Andrew E. Szymkowiak, Hiroyasu Tajima, Hiromitsu Takahashi, Tadayuki Takahashi, Shin'ichiro Takeda, Yoh Takei, Toru Tamagawa, Keisuke Tamura, Takayuki Tamura, Takaaki Tanaka, Yasuo Tanaka, Yasuyuki Tanaka, Makoto Tashiro, Yuzuru Tawara, Yukikatsu Terada, Yuichi Terashima, Francesco Tombesi, Hiroshi Tomida, Yohko Tsuboi, Masahiro Tsujimoto, Hiroshi Tsunemi, Takeshi Tsuru, Hiroyuki Uchida, Hideki Uchiyama, Yasunobu Uchiyama, Shutaro Ueda, Yoshihiro Ueda, Shiro Ueno, Shin'ichiro Uno, C. Meg Urry, Eugenio Ursino, Cor P. de Vries, Shin Watanabe, Norbert Werner, Daniel R. Wik, Dan R. Wilkins, Brian J. Williams, Shinya Yamada, Hiroya Yamaguchi, Kazutaka Yamaoka, Noriko Y. Yamasaki, Makoto Yamauchi, Shigeo Yamauchi, Tahir Yaqoob, Yoichi Yatsu, Daisuke Yonetoku, Atsumasa Yoshida, Irina Zhuravleva, Abderahmen Zoghbi

High-resolution X-ray spectroscopy with Hitomi was expected to resolve the origin of the faint unidentified E=3.5 keV emission line reported in several low-resolution studies of various massive systems, such as galaxies and clusters, including the Perseus cluster. We have analyzed the Hitomi first-light observation of the Perseus cluster. The emission line expected for Perseus based on the XMM-Newton signal from the large cluster sample under the dark matter decay scenario is too faint to be detectable in the Hitomi data. However, the previously reported 3.5 keV flux from Perseus was anomalously high compared to the sample-based prediction. We find no unidentified line at the reported flux level. The high flux derived with XMM MOS for the Perseus region covered by Hitomi is excluded at >3-sigma within the energy confidence interval of the most constraining previous study. If XMM measurement uncertainties for this region are included, the inconsistency with Hitomi is at a 99% significance for a broad dark-matter line and at 99.7% for a narrow line from the gas. We do find a hint of a broad excess near the energies of high-n transitions of Sxvi (E=3.44 keV rest-frame) -- a possible signature of charge exchange in the molecular nebula and one of the proposed explanations for the 3.5 keV line. While its energy is consistent with XMM pn detections, it is unlikely to explain the MOS signal. A confirmation of this interesting feature has to wait for a more sensitive observation with a future calorimeter experiment.

Comments: 8 pages, 4 figures. Submitted to ApJL

Similar Publications

Circularly polarized photons have the Berry curvature in the semiclassical regime. Based on the kinetic equation for such chiral photons, we derive the (non)equilibrium expression of the photon current in the direction of the vorticity. We briefly discuss the relevance of this "photonic chiral vortical effect" in pulsars and rotating massive stars and its possible realization in semiconductors. Read More

Authors: H. -Th. Janka1
Affiliations: 1MPI Astrophysics, Garching

The question why and how core-collapse supernovae (SNe) explode is one of the central and most long-standing riddles of stellar astrophysics. A solution is crucial for deciphering the SN phenomenon, for predicting observable signals such as light curves and spectra, nucleosynthesis, neutrinos, and gravitational waves, for defining the role of SNe in the evolution of galaxies, and for explaining the birth conditions and properties of neutron stars (NSs) and stellar-mass black holes. Since the formation of such compact remnants releases over hundred times more energy in neutrinos than the SN in the explosion, neutrinos can be the decisive agents for powering the SN outburst. Read More

We investigate whether the highest energy neutrinos observed by IceCube are produced by BL Lacs, a reasonable hypothesis that does not contradict severely any known fact. We test it by searching for correlations between the through-going muon events of IceCube and the BL Lacs of the second catalogue of Fermi-LAT (2FHL). If the BL Lac are the main source of the neutrinos, we expect 10. Read More

Cosmic rays around the knee are generally believed to be of galactic origin. Observations on their energy spectrum and chemical composition are important for understanding the acceleration and propagation of these cosmic rays. In addition, it is required to clarify the transition from galactic to extragalactic sources. Read More

If accreting white dwarfs in binary systems are to produce type Ia supernovae, they must grow beyond the Chandrasekhar mass limit. Proving conclusively that a white dwarf has grown substantially since its birth is challenging. Slow accretion of hydrogen leads to the erosion, rather than the growth of WDs. Read More

The inner structure of neutron stars is still an open question. To make progress and understand the qualitative impact of gauge interactions on the neutron star structure we study neutron stars in a modified version of QCD. In this modification the gauge group of QCD is replaced by the exceptional Lie group G$_2$, which has neutrons and is accessible at finite density in lattice calculations. Read More

Supernovae are the most powerful cosmic sources of MeV neutrinos. These elementary particles play a crucial role when the evolution of a massive star is terminated by the collapse of its core to a neutron star or a black hole and the star explodes as supernova. The release of electron neutrinos, which are abundantly produced by electron captures, accelerates the catastrophic infall and causes a gradual neutronization of the stellar plasma by converting protons to neutrons as dominant constituents of neutron star matter. Read More

The nature of the magnetic structure arising from ion specular reflection in shock compression studies is examined by means of 1d particle in cell simulations. Propagation speed, field profiles and supporting currents for this magnetic structure are shown to be consistent with a magnetosonic soliton. Coincidentally, this structure and its evolution are typical of foot structures observed in perpendicular shock reformation. Read More

The limit on the intrinsic brightness temperature, attributed to `Compton catastrophe', has been established being $10^{12}$~K. Somewhat lower limit of the order of $10^{11.5}$~K is implied if we assume that the radiating plasma is in equipartition with the magnetic field --- the idea that explained why the observed cores of active galactic nuclei sustained the limit lower than the `Compton catastrophe'. Read More


The persistent radio counterpart of FRB 121102 is estimated to have $N\sim 10^{52}$ particles, energy $E_N\sim 10^{48}$ erg, and size $R\sim 10^{17}$ cm. The source can be a nebula inflated and heated by an intermittent outflow from a magnetar -- a neutron star powered by its magnetic (rather than rotational) energy. The object is young and frequently liberating energy in magnetic flares driven by accelerated ambipolar diffusion in the neutron star core, feeding the nebula and producing bright millisecond bursts. Read More