Hitomi constraints on the 3.5 keV line in the Perseus galaxy cluster

Authors: Hitomi Collaboration, Felix A. Aharonian, Hiroki Akamatsu, Fumie Akimoto, Steven W. Allen, Lorella Angelini, Keith A. Arnaud, Marc Audard, Hisamitsu Awaki, Magnus Axelsson, Aya Bamba, Marshall W. Bautz, Roger D. Blandford, Laura W. Brenneman, Gregory V. Brown, Esra Bulbul, Edward M. Cackett, Maria Chernyakova, Meng P. Chiao, Paolo Coppi, Elisa Costantini, Jelle de Plaa, Jan-Willem den Herder, Chris Done, Tadayasu Dotani, Ken Ebisawa, Megan E. Eckart, Teruaki Enoto, Yuichiro Ezoe, Andrew C. Fabian, Carlo Ferrigno, Adam R. Foster, Ryuichi Fujimoto, Yasushi Fukazawa, Akihiro Furuzawa, Massimiliano Galeazzi, Luigi C. Gallo, Poshak Gandhi, Margherita Giustini, Andrea Goldwurm, Liyi Gu, Matteo Guainazzi, Yoshito Haba, Kouichi Hagino, Kenji Hamaguchi, Ilana Harrus, Isamu Hatsukade, Katsuhiro Hayashi, Takayuki Hayashi, Kiyoshi Hayashida, Junko Hiraga, Ann E. Hornschemeier, Akio Hoshino, John P. Hughes, Yuto Ichinohe, Ryo Iizuka, Hajime Inoue, Shota Inoue, Yoshiyuki Inoue, Kazunori Ishibashi, Manabu Ishida, Kumi Ishikawa, Yoshitaka Ishisaki, Masayuki Itoh, Naoko Iyomoto, Jelle S. Kaastra, Timothy Kallman, Tuneyoshi Kamae, Erin Kara, Jun Kataoka, Satoru Katsuda, Junichiro Katsuta, Madoka Kawaharada, Nobuyuki Kawai, Richard L. Kelley, Dmitry Khangulyan, Caroline A. Kilbourne, Ashley L. King, Takao Kitaguchi, Shunji Kitamoto, Tetsu Kitayama, Takayoshi Kohmura, Motohide Kokubun, Shu Koyama, Katsuji Koyama, Peter Kretschmar, Hans A. Krimm, Aya Kubota, Hideyo Kunieda, Philippe Laurent, Francois Lebrun, Shiu-Hang Lee, Maurice Leutenegger, Olivier Limousin, Michael Loewenstein, Knox S. Long, David Lumb, Grzegorz M. Madejski, Yoshitomo Maeda, Daniel Maier, Kazuo Makishima, Maxim Markevitch, Hironori Matsumoto, Kyoko Matsushita, Dan McCammon, Brian R. McNamara, Missagh Mehdipour, Eric D. Miller, Jon M. Miller, Shin Mineshige, Kazuhisa Mitsuda, Ikuyuki Mitsuishi, Takuya Miyazawa, Tsunefumi Mizuno, Hideyuki Mori, Koji Mori, Harvey Moseley, Koji Mukai, Hiroshi Murakami, Toshio Murakami, Richard F. Mushotzky, Takao Nakagawa, Hiroshi Nakajima, Takeshi Nakamori, Toshio Nakano, Shinya Nakashima, Kazuhiro Nakazawa, Kumiko Nobukawa, Masayoshi Nobukawa, Hirofumi Noda, Masaharu Nomachi, Steve L. O'Dell, Hirokazu Odaka, Takaya Ohashi, Masanori Ohno, Takashi Okajima, Naomi Ota, Masanobu Ozaki, Frits Paerels, Stephane Paltani, Arvind Parmar, Robert Petre, Ciro Pinto, Martin Pohl, F. Scott Porter, Katja Pottschmidt, Brian D. Ramsey, Christopher S. Reynolds, Helen R. Russell, Samar Safi-Harb, Shinya Saito, Kazuhiro Sakai, Hiroaki Sameshima, Toru Sasaki, Goro Sato, Kosuke Sato, Rie Sato, Makoto Sawada, Norbert Schartel, Peter J. Serlemitsos, Hiromi Seta, Megumi Shidatsu, Aurora Simionescu, Randall K. Smith, Yang Soong, Lukasz Stawarz, Yasuharu Sugawara, Satoshi Sugita, Andrew E. Szymkowiak, Hiroyasu Tajima, Hiromitsu Takahashi, Tadayuki Takahashi, Shin'ichiro Takeda, Yoh Takei, Toru Tamagawa, Keisuke Tamura, Takayuki Tamura, Takaaki Tanaka, Yasuo Tanaka, Yasuyuki Tanaka, Makoto Tashiro, Yuzuru Tawara, Yukikatsu Terada, Yuichi Terashima, Francesco Tombesi, Hiroshi Tomida, Yohko Tsuboi, Masahiro Tsujimoto, Hiroshi Tsunemi, Takeshi Tsuru, Hiroyuki Uchida, Hideki Uchiyama, Yasunobu Uchiyama, Shutaro Ueda, Yoshihiro Ueda, Shiro Ueno, Shin'ichiro Uno, C. Meg Urry, Eugenio Ursino, Cor P. de Vries, Shin Watanabe, Norbert Werner, Daniel R. Wik, Dan R. Wilkins, Brian J. Williams, Shinya Yamada, Hiroya Yamaguchi, Kazutaka Yamaoka, Noriko Y. Yamasaki, Makoto Yamauchi, Shigeo Yamauchi, Tahir Yaqoob, Yoichi Yatsu, Daisuke Yonetoku, Atsumasa Yoshida, Irina Zhuravleva, Abderahmen Zoghbi

High-resolution X-ray spectroscopy with Hitomi was expected to resolve the origin of the faint unidentified E=3.5 keV emission line reported in several low-resolution studies of various massive systems, such as galaxies and clusters, including the Perseus cluster. We have analyzed the Hitomi first-light observation of the Perseus cluster. The emission line expected for Perseus based on the XMM-Newton signal from the large cluster sample under the dark matter decay scenario is too faint to be detectable in the Hitomi data. However, the previously reported 3.5 keV flux from Perseus was anomalously high compared to the sample-based prediction. We find no unidentified line at the reported flux level. The high flux derived with XMM MOS for the Perseus region covered by Hitomi is excluded at >3-sigma within the energy confidence interval of the most constraining previous study. If XMM measurement uncertainties for this region are included, the inconsistency with Hitomi is at a 99% significance for a broad dark-matter line and at 99.7% for a narrow line from the gas. We do find a hint of a broad excess near the energies of high-n transitions of Sxvi (E=3.44 keV rest-frame) -- a possible signature of charge exchange in the molecular nebula and one of the proposed explanations for the 3.5 keV line. While its energy is consistent with XMM pn detections, it is unlikely to explain the MOS signal. A confirmation of this interesting feature has to wait for a more sensitive observation with a future calorimeter experiment.

Comments: 8 pages, 4 figures. Submitted to ApJL

Similar Publications

Detection of the mostly geomagnetically generated radio emission of cosmic-ray air showers provides an alternative to air-Cherenkov and air-fluorescence detection, since it is not limited to clear nights. Like these established methods, the radio signal is sensitive to the calorimetric energy and the position of the maximum of the electromagnetic shower component. This makes antenna arrays an ideal extension for particle-detector arrays above a threshold energy of about 100 PeV of the primary cosmic-ray particles. Read More

The similarity of the host galaxy of FRB 121102 with those of long gamma-ray bursts and Type I super-luminous supernovae suggests that this FRB could be associated with a young magnetar. By assuming the FRB emission to be produced in the magnetosphere, we derive a lower limit on the age of the magnetar by enabling GHz emission freely escape from the dense relativistic wind of the magnetar. Another lower limit is also obtained by requiring the dispersion measure contributed by the wind electrons/positrons to be consistent with the observations of host galaxy. Read More

We give a short review of processes of stochastic acceleration in the Galaxy. We discuss: how to estimate correctly the number of accelerated particles, and at which condition the stochastic mechanism is able to generate power-law nonthermal spectra. We present an analysis of stochastic acceleration in the Galactic halo and discuss whether this mechanism can be responsible for production of high energy electrons there, which emit gamma-ray and microwave emission from the giant Fermi bubbles. Read More

Affiliations: 1Queen's University Belfast, 2Queen's University Belfast, 3Queen's University Belfast, 4Queen's University Belfast, 5Queen's University Belfast, 6Harvard-Smithsonian Center for Astrophysics, 7Ohio University, 8University of California, Santa Cruz, 9Las Cumbres Observatory Global Telescope, 10University of Hawaii at Manoa, 11University of Hawaii at Manoa, 12University of Hawaii at Manoa, 13University of Hawaii at Manoa

In this study, we present observations of a type Iax supernova, PS1-12bwh, discovered during the Pan-STARRS1 3$\pi$-survey. Our analysis was driven by previously unseen pre-maximum, spectroscopic heterogeneity. While the light curve and post-maximum spectra of PS1-12bwh are virtually identical to those of the well-studied type Iax supernova, SN 2005hk, the $-$2 day spectrum of PS1-12bwh does not resemble SN 2005hk at a comparable epoch; instead, we found it to match a spectrum of SN 2005hk taken over a week earlier ($-$12 day). Read More

We study particle acceleration and radiative processes in Blazar jets under recurring conditions set by gravitational perturbations in supermassive binary systems. We consider the action from a companion orbiting a primary black hole of $\sim 10^8 \, M_{\odot}$, and perturbing its relativistic jet. We discuss how such conditions induce repetitive magneto-hydrodynamic stresses along the jet, and affect its inner electron acceleration and radiative processes. Read More

A brief review of supersymmetric models and their candidates for dark matter is carried out. The neutralino is a WIMP candidate in the MSSM where $R$-parity is conserved, but this model has the $\mu$ problem. There are natural solutions to this problem that necessarily introduce new structure beyond the MSSM, including new candidates for dark matter. Read More

The modeling of Li-Paczy\'{n}ski macronova/kilonova signals gives reasonable estimate on the neutron-rich material ejected during the neutron star mergers. Usually the accretion disk is more massive than the macronova ejecta, with which the efficiencies of converting the disk mass into prompt emission of three merger-driven GRBs can hence be directly constrained. Supposing the macronovae/kilonovae associated with GRB 050709, GRB 060614 and GRB 130603B arose from radioactive decay of the r-process material, the upper limit on energy conversion efficiencies are found to be as low as $\sim 10^{-6}-10^{-4}$. Read More

The understanding of the basic properties of the ultra - high energy extensive air showers is strongly dependent on the description of the hadronic interactions in a energy range beyond that probed by the LHC. One of the uncertainties present in the modeling of the air showers is the treatment of diffractive interactions, which are dominated by non - perturbative physics and usually described by phenomenological models. These interactions are expect to affect the development of the air showers, since they provide a way of transporting substantial amounts of energy deep in the atmosphere, modifying the global characteristics of the shower profile. Read More

Core-collapse supernovae (CCSNe) are the extremely energetic deaths of massive stars. They play a vital role in the synthesis and dissemination of many heavy elements in the universe. In the past, CCSN nucleosynthesis calculations have relied on artificial explosion methods that do not adequately capture the physics of the innermost layers of the star. Read More

We present hydrodynamic simulations of the hot cocoon produced when a relativistic jet passes through the gamma-ray burst (GRB) progenitor star and its environment, and we compute the lightcurve and spectrum of the radiation emitted by the cocoon. The radiation from the cocoon has a nearly thermal spectrum with a peak in the X-ray band, and it lasts for a few minutes in the observer frame; the cocoon radiation starts at roughly the same time as when $\gamma$-rays from a burst trigger detectors aboard GRB satellites. The isotropic cocoon luminosity ($\sim 10^{47}$ erg s$^{-1}$) is of the same order of magnitude as the X-ray luminosity of a typical long-GRB afterglow during the plateau phase. Read More