Bayesian inverse problems with $l_1$ priors: a Randomize-then-Optimize approach

Prior distributions for Bayesian inference that rely on the $l_1$-norm of the parameters are of considerable interest, in part because they promote parameter fields with less regularity than Gaussian priors (e.g., discontinuities and blockiness). These $l_1$-type priors include the total variation (TV) prior and the Besov $B^s_{1,1}$ space prior, and in general yield non-Gaussian posterior distributions. Sampling from these posteriors is challenging, particularly in the inverse problem setting where the parameter space is high-dimensional and the forward problem may be nonlinear. This paper extends the randomize-then-optimize (RTO) method, an optimization-based sampling algorithm developed for Bayesian inverse problems with Gaussian priors, to inverse problems with $l_1$-type priors. We use a variable transformation to convert an $l_1$-type prior to a standard Gaussian prior, such that the posterior distribution of the transformed parameters is amenable to Metropolized sampling via RTO. We demonstrate this approach on several deconvolution problems and an elliptic PDE inverse problem, using TV or Besov $B^s_{1,1}$ space priors. Our results show that the transformed RTO algorithm characterizes the correct posterior distribution and can be more efficient than other sampling algorithms. The variable transformation can also be extended to other non-Gaussian priors.

Comments: Preprint 24 pages, 13 figures. v1 submitted to SIAM Journal on Scientific Computing on July 5, 2016

Similar Publications

Convex sparsity-promoting regularizations are ubiquitous in modern statistical learning. By construction, they yield solutions with few non-zero coefficients, which correspond to saturated constraints in the dual optimization formulation. Working set (WS) strategies are generic optimization techniques that consist in solving simpler problems that only consider a subset of constraints, whose indices form the WS. Read More


In many modern settings, data are acquired iteratively over time, rather than all at once. Such settings are known as online, as opposed to offline or batch. We introduce a simple technique for online parameter estimation, which can operate in low memory settings, settings where data are correlated, and only requires a single inspection of the available data at each time period. Read More


This article proposes a new graphical tool, the magnitude-shape (MS) plot, for visualizing both the magnitude and shape outlyingness of multivariate functional data. The proposed tool builds on the recent notion of functional directional outlyingness, which measures the centrality of functional data by simultaneously considering the level and the direction of their deviation from the central region. The MS-plot intuitively presents not only levels but also directions of magnitude outlyingness on the horizontal axis or plane, and demonstrates shape outlyingness on the vertical axis. Read More


Kernel quadratures and other kernel-based approximation methods typically suffer from prohibitive cubic time and quadratic space complexity in the number of function evaluations. The problem arises because a system of linear equations needs to be solved. In this article we show that the weights of a kernel quadrature rule can be computed efficiently and exactly for up to tens of millions of nodes if the kernel, integration domain, and measure are fully symmetric and the node set is a union of fully symmetric sets. Read More


nimble is an R package for constructing algorithms and conducting inference on hierarchical models. The nimble package provides a unique combination of flexible model specification and the ability to program model-generic algorithms -- specifically, the package allows users to code models in the BUGS language, and it allows users to write algorithms that can be applied to any appropriately-specified BUGS model. In this paper, we introduce nimble's capabilities for state-space model analysis using Sequential Monte Carlo (SMC) techniques. Read More


Integration against an intractable probability measure is among the fundamental challenges of statistical inference, particularly in the Bayesian setting. A principled approach to this problem seeks a deterministic coupling of the measure of interest with a tractable "reference" measure (e.g. Read More


We study the convergence properties of the Gibbs Sampler in the context of posterior distributions arising from Bayesian analysis of Gaussian hierarchical models. We consider centred and non-centred parameterizations as well as their hybrids including the full family of partially non-centred parameterizations. We develop a novel methodology based on multi-grid decompositions to derive analytic expressions for the convergence rates of the algorithm for an arbitrary number of layers in the hierarchy, while previous work was typically limited to the two-level case. Read More


The marginal likelihood plays an important role in many areas of Bayesian statistics such as parameter estimation, model comparison, and model averaging. In most applications, however, the marginal likelihood is not analytically tractable and must be approximated using numerical methods. Here we provide a tutorial on bridge sampling (Bennett, 1976; Meng & Wong, 1996), a reliable and relatively straightforward sampling method that allows researchers to obtain the marginal likelihood for models of varying complexity. Read More


This study presents an innovative method for reducing the number of rating scale items without predictability loss. The "area under the re- ceiver operator curve method" (AUC ROC) is used to implement in the RatingScaleReduction package posted on CRAN. Several cases have been used to illustrate how the stepwise method has reduced the number of rating scale items (variables). Read More


Bayesian optimal experimental design has immense potential to inform the collection of data, so as to subsequently enhance our understanding of a variety of processes. However, a major impediment is the difficulty in evaluating optimal designs for problems with large, or high-dimensional, design spaces. We propose an efficient search heuristic suitable for general optimisation problems, with a particular focus on optimal Bayesian experimental design problems. Read More