Two characterisations of groups amongst monoids

The aim of this paper is to solve a problem proposed by Dominique Bourn: to provide a categorical-algebraic characterisation of groups amongst monoids and of rings amongst semirings. In the case of monoids, our solution is given by the following equivalent conditions: (i) $G$ is a group; (ii) $G$ is a Mal'tsev object, i.e., the category of points over $G$ in the category of monoids is unital; (iii) $G$ is a protomodular object, i.e., all points over $G$ are stably strong. We similarly characterise rings in the category of semirings. On the way we develop a local or object-wise approach to certain important conditions occurring in categorical algebra. This leads to a basic theory involving what we call unital and strongly unital objects, subtractive objects, Mal'tsev objects and protomodular objects. We explore some of the connections between these new notions and give examples and counterexamples.

Comments: 29 pages

Similar Publications

We define a family of quantum invariants of closed oriented $3$-manifolds using spherical multi-fusion categories. The state sum nature of this invariant leads directly to $(2+1)$-dimensional topological quantum field theories ($\text{TQFT}$s), which generalize the Turaev-Viro-Barrett-Westbury ($\text{TVBW}$) $\text{TQFT}$s from spherical fusion categories. The invariant is given as a state sum over labeled triangulations, which is mostly parallel to, but richer than the $\text{TVBW}$ approach in that here the labels live not only on $1$-simplices but also on $0$-simplices. Read More

These are expanded lecture notes from lectures given at the Workshop on higher structures at MATRIX Melbourne. These notes give an introduction to Feynman categories and their applications. Feynman categories give a universal categorical way to encode operations and relations. Read More

We use the language of precategories to formulate a general mathematical framework for phylogenetics. Read More

Topos theory is a category-theoretic axiomatization of set theory. Model categories are a category-theoretical framework for abstract homotopy theory. They are complete and cocomplete categories endowed with three classes of morphisms (called fibrations, cofibrations and equivalences) satisfying certain axioms. Read More

We describe the split extension classifiers in the semi-abelian category of cocommutative Hopf algebras over an algebraically closed field of characteristic zero. The categorical notions of centralizer and of center in the category of cocommutative Hopf algebras is then explored. We show that the categorical notion of center coincides with the one that is considered in the theory of general Hopf algebras. Read More

These notes follows the articles \cite{kamel, Cam, cam-cubique} which show how powerful can be the method of \textit{Stretchings} initiated with the \textit{Globular Geometry} by Jacques Penon in \cite{penon} , to weakened \textit{strict higher structures}. Here we adapt this method to weakened strict multiple $\infty$-categories, strict multiple $(\infty,m)$-categories, and in particular we obtain algebraic models of weak multiple $\infty$-groupoids. Read More

In this article we construct three explicit natural subgroups of the Brauer-Picard group of the category of representations of a finite-dimensional Hopf algebra. In examples the Brauer Picard group decomposes into an ordered product of these subgroups, somewhat similar to a Bruhat decomposition. Our construction returns for any Hopf algebra three types of braided autoequivalences and correspondingly three families of invertible bimodule categories. Read More

We present a denotational account of dynamic allocation of potentially cyclic memory cells using a monad on a functor category. We identify the collection of heaps as an object in a different functor category equipped with a monad for adding hiding/encapsulation capabilities to the heaps. We derive a monad for full ground references supporting effect masking by applying a state monad transformer to the encapsulation monad. Read More

We define a new equivalence between algebras for n-globular operads which is suggested in [Cottrell 2015], and show that it is a generalization of ordinary equivalence between categories. Read More

We describe the combinatorics of the multisemigroup with multiplicities for the tensor category of subbimodules of the identity bimodule, for an arbitrary non-uniform orientation of a finite cyclic quiver. Read More