Thermodynamics of a Simple Three-Dimensional DNA Hairpin Model

We characterize the equation of state for a simple three-dimensional DNA hairpin model using a Metropolis Monte Carlo algorithm. This algorithm was run at constant temperature and fixed separation between the terminal ends of the strand. From the equation of state, we compute the compressibility, thermal expansion coefficient, and specific heat along with adiabatic path.

Comments: 10 pages, 16 figures

Similar Publications

Cell state determination is the outcome of intrinsically stochastic biochemical reactions. Tran- sitions between such states are studied as noise-driven escape problems in the chemical species space. Escape can occur via multiple possible multidimensional paths, with probabilities depending non-locally on the noise. Read More


Detecting defection and alarming partners about the possible danger could be essential to avoid being exploited. This act, however, may require a huge individual effort from those who take this job, hence such a strategy seems to be unfavorable. But structured populations can provide an opportunity where a largely unselfish excluder strategy can form an effective alliance with other cooperative strategies, hence they can sweep out defection. Read More


Current understanding of how contractility emerges in disordered actomyosin networks of non-muscle cells is still largely based on the intuition derived from earlier works on muscle contractility. This view, however, largely overlooks the free energy gain following passive cross-linker binding, which, even in the absence of active fluctuations, provides a thermodynamic drive towards highly overlapping filamentous states. In this work, we shed light on this phenomenon, showing that passive cross-linkers, when considered in the context of two anti-parallel filaments, generate noticeable contractile forces. Read More


Spatial organisation is a hallmark of all living cells, and recreating it in model systems is a necessary step in the creation of synthetic cells. It is therefore of both fundamental and practical interest to better understand the basic mechanisms underlying spatial organisation in cells. In this work, we use a continuum model of membrane and protein dynamics to study the behaviour of curvature-inducing proteins on membranes of spherical shape, such as living cells or lipid vesicles. Read More


Controlling the self-assembly of supramolecular structures is vital for living cells, and a central challenge for engineering at the nano- and microscales. Nevertheless, even particles without optimized shapes can robustly form well-defined morphologies. This is the case in numerous medical conditions where normally soluble proteins aggregate into fibers. Read More


The present paper deals with an experimental feasibility study concerning the detection of long- range intermolecular interactions through molecular diffusion behavior in solution. This follows previous analyses, theoretical and numerical, where it was found that inter-biomolecular long-range force fields of electrodynamic origin could be detected through deviations from Brownian diffusion. The suggested experimental technique was Fluorescence Correlation Spectroscopy (FCS). Read More


Cells rely on focal adhesions (FAs) to carry out a variety of important tasks, including motion, environmental sensing, and adhesion to the extracellular matrix. Although attaining a fundamental characterization of FAs is a compelling goal, their extensive complexity and small size, which can be below the diffraction limit, have hindered a full understanding. In this study we have used single-molecule localization microscopy (SMLM) to investigate integrin $\beta$3 and paxillin in rat embryonic fibroblasts growing on two different extracellular matrix-representing substrates (i. Read More


Fluorescence Correlation Spectroscopy (FCS) is widely used to detect and quantify diffusion processes at the molecular level. The molecules of which diffusion is studied are marked with fluorescent dyes. It is commonly maintained that this technique only applies to systems where the concentration of fluorescent molecules is low. Read More


Fish schooling is often modeled with self-propelled particles subject to phenomenological behavioral rules. Although fish are known to sense and exploit flow features, these models usually neglect hydrodynamics. Here, we propose a novel model that couples behavioral rules with far-field hydrodynamic interactions. Read More


Quantifying the action of antibiotics on biofilms is essential to devise therapies against chronic infections. Biofilms are bacterial communities attached to moist surfaces, sheltered from external aggressions by a polymeric matrix. Coupling a dynamic energy budget based description of cell metabolism to surrounding concentration fields, we are able to approximate survival curves measured for different antibiotics. Read More