Indirect Detection Constraints on s and t Channel Simplified Models of Dark Matter

Recent Fermi-LAT observations of dwarf spheroidal galaxies in the Milky Way have placed strong limits on the gamma-ray flux from dark matter annihilation. In order to produce the strongest limit on the dark matter annihilation cross-section, the observations of each dwarf galaxy have typically been "stacked" in a joint-likelihood analysis, utilizing optical observations to constrain the dark matter density profile in each dwarf. These limits have typically been computed only for singular annihilation final states, such as $b\bar{b}$ or $\tau^+\tau^-$. In this paper, we generalize this approach by producing an independent joint-likelihood analysis to set constraints on models where the dark matter particle annihilates to multiple final state fermions. We interpret these results in the context of the most popular simplified models, including those with s- and t-channel dark matter annihilation through scalar and vector mediators. We present our results as constraints on the minimum dark matter mass and the mediator sector parameters. Additionally, we compare our simplified model results to those of Effective Field Theory contact interactions in the high-mass limit.

Comments: 13 pages, 13 figures

Similar Publications

We present an analytic computation of the Higgs production cross section in the gluon fusion channel, which is differential in the components of the Higgs momentum and inclusive in the associated partonic radiation through NNLO in perturbative QCD. Our computation includes the necessary higher order terms in the dimensional regulator beyond the finite part that are required for renormalisation and collinear factorisation at N$^3$LO. We outline in detail the computational methods which we employ. Read More


We argue that a large region of so far unconstrained parameter space for axion-like particles (ALPs), where their couplings to the Standard Model are of order $(0.01\!-\!1)\,\mbox{TeV}^{-1}$, can be explored by searches for the exotic Higgs decays $h\to Za$ and $h\to aa$ in Run-2 of the LHC. Almost the complete region in which ALPs can explain the anomalous magnetic moment of the muon can be probed by searches for these decays with subsequent decay $a\to\gamma\gamma$, even if the relevant couplings are loop suppressed and the $a\to\gamma\gamma$ branching ratio is less than~1. Read More


In line with its terms of reference the ICFA Neutrino Panel has developed a roadmapfor the international, accelerator-based neutrino programme. A "roadmap discussion document" was presented in May 2016 taking into account the peer-group-consultation described in the Panel's initial report. The "roadmap discussion document" was used to solicit feedback from the neutrino community---and more broadly, the particle- and astroparticle-physics communities---and the various stakeholders in the programme. Read More


We discuss the implications of the recently reported $R_K$ and $R_{K^*}$ anomalies, the lepton flavor non-universality in the $B\to K\ell^+\ell^-$ and $B\to K^*\ell^+\ell^-$. Using two sets of hadronic inputs of form factors, we perform a fit of the new physics to the $R_K$ and $R_{K^*}$ data, and significant new physics contributions are found. We propose to study the lepton flavor universality in a number of related rare $B, B_s, B_c$ and $\Lambda_b$ decay channels, and in particular we point out the $\mu$-to-$e$ ratios of decay widths with different polarizations of the final state particles, and of the $b\to d\ell^+\ell^-$ processes are presumably more sensitive to the structure of the underlying new physics. Read More


The largest global symmetry that can be made local in the Standard Model + 3$\nu_R$ while being compatible with Pati-Salam unification is $SU(3)_H\times U(1)_{B-L}$. The gauge bosons of this theory would induce flavour effects involving both quarks and leptons, and are a potential candidate to explain the recent reports of lepton universality violation in rare B meson decays. In this letter we characterise this type of models and show how they can accommodate the data and naturally be within reach of direct searches. Read More


As a complementary study to that performed on the transverse momentum ($p_{\rm T}$) spectra of pions, kaons and protons in proton-proton (pp) collisions at LHC energies 0.9, 2.76 and 7 TeV, we present a scaling behaviour in the $p_{\rm T}$ spectra of strange particles ($K_{S}^{0}$, $\Lambda$ and $\Xi$) at these three energies. Read More


The natural supersymmetry (SUSY) requires light stop quarks, light sbottom quark, and gluino to be around one TeV or lighter. The first generation squarks can be effectively large which does not introduce any hierarchy problem in order to escape the constraints from LHC. In this paper we consider a Yukawa deflect medation to realize the effective natural supersymmetry where the interaction between squarks and messenger are made natural under certain Frogget-Nelson $U(1)_X$ charge. Read More


The reaction e + p ---> photon + jet + X is studied in QCD at the next-to-leading order. Previous studies on inclusive distributions showed a good agreement with ZEUS data. To obtain a finer understanding of the dynamics of the reaction, several correlation functions are evaluated for ZEUS kinematics. Read More


In the next decade several experiments will attempt to determine the neutrino mass hierarchy, i.e. the sign of $\Delta m_{31}^2$. Read More


The recent Madala hypothesis, a conjecture that seeks to explain anomalies within Large Hadron Collider (LHC) data (particularly in the transverse momentum of the Higgs boson), is interesting for more than just a statistical hint at unknown and unpredicted physics. This is because the model itself contains additional new particles that may serve as Dark Matter (DM) candidates. These particles interact with the Standard Model via a scalar mediator boson $S$. Read More